AN AUTONOMOUS ROBOT CONTROL SYSTEM BASED ON AN INVERSE PROBLEMS METHOD IN DYNAMICS

Receipt date: 
18.03.2019
Bibliographic description of the article: 

Antoshkin S. B., Bakanov M. V., Sizykh V. N. Sistema upravleniya avtonomnogo robota na osnove metoda obratnykh zadach dinamiki [An autonomous robot control system based on an inverse problems method in dynamics]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 62, No. 2, pp. 15–23. DOI: 10.26731/1813-9108.2019.2(62).15–23

Year: 
2019
Journal number: 
УДК: 
681.5
DOI: 

10.26731/1813-9108.2019.2(62).15–23

Article File: 
Pages: 
15
23
Abstract: 

The article discusses the algorithm of orientation of transport robots according to the acoustic signal of a stationary beacon or beacon of a leading vehicle.  Signal filtering features for known bearing methods are identified. Signal bearing is analyzed in the presence of noise. An algorithm is given to simultaneously eliminate ambiguity and minimize errors of the acoustic signal bearing. An algorithm was developed and modeled to simultaneously eliminate ambiguity and minimize bearing measurement errors. Simulation results are analyzed. This algorithm can be implemented with a relatively simple and inexpensive microprocessor. When using a system of at least three beacons, it is possible to upgrade the algorithm to determine the coordinates of the lead robot in the working space. To solve the problem of controlling the slave robot, its non-linear mathematical model has been developed, which is implemented in the MATLAB / Simulink programming environment. The method of building proportional regulators with double differentiation (PDD) for a slave autonomous robot is justified on the basis of the dynamic compensation principle.  The laws of wheelset control are synthesized on the basis of reference models according to a simple gradient scheme of the method of inverse problems of dynamics in the formulation of P. D. Krut'ko for the problem of stabilizing (damping) the angular velocities of a three-wheeled mobile robot. A simulation control model has been developed, including a block of angular position and trajectory movement of the robot, a multidimensional multiply connected mathematical model of angular motion of the robot, a PDD regulator unit based on reference models. A Simulink model of the slave robot moving behind the master robot has been developed. The analysis of the simulation results has been performed.

List of references: 

Poduraev Yu.V. Osnovy mekhatroniki: Uchebnoe posobie [Fundamentals of Mechatronics: a study guide]. Moscow: Stankin Punl., 2000. 80 p.

2.   Vorotnikov S.A. Informatsionnye ustroistva robototekhnicheskikh system [Information devices of robotic systems]. Moscow: Bauman MGTU Publ., 2005. 384 p.

3.   Ageev M.D., Kiselev L.V., Matvienko Yu.V. et al.; Avtonomnye podvodnye roboty: sistemy i tekhnologii [Autonomous underwater robots: systems and technologies]. In-t problem morskikh tekhnologii [Institute of problems of marine technologies]. Moscow: Nauka Publ., 2005. 398 p.

4.   Grishin Yu.P., Ipatov V.P., Yu.M. Kazarinov et al. Radiotekhnicheskie sistemy [Radio engineering systems]. Moscow: Vyssh. shk. Publ., 1990. 496 p.

5.   Sizykh V.N., M.V. Bakanov Matematicheskaya model' dlya adaptivnogo upravleniya trekhkolesnym mobil'nym robotom [A mathematical model for adaptive control of a three-wheeled mobile robot]. Transportnoe, gornoe i stroitel'noe mashinostroenie: nauka i proizvodstvo : materialy mezhdunar. nauch.-prakt. konf [Transport, mining and construction engineering: science and production: materials of the Intern. scientific and practical conf.]. St.Petersburg : SPbF NITs MS Publ., 2018. No. 1. Pp. 9–18.

6.   Pupkov K.A., Egupov N.D. (ed.). Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya. T.3: Sintez regulyatorov sistem avtomaticheskogo upravleniya [Methods of classical and modern theory of automatic control. Vol.3: Synthesis of regulators of automatic control systems]. Moscow: Bauman MGTU Publ., 2004. 616 p.

7.   Ang A.H., Chong G., Li Y.PID control system analysis, design and technology. IEEE Trans. on Control Syst. Tech., 2005. Vol. 13. No. 4. Pp. 559–576.

8.   Astom K.J., Hagglunk T. Advanced PID control. Instrumentation, Systems and Automation Society, 2006. 406 p.

9.   Quevedo J., Escobet T. Digital control: past, present and future of PID control. Proc. IFACWorkshop. Terassa, Spain, Apr. 5-7, 2000.

10. Bulgakov V.V., V.S. Kulabukhov Sravnitel'nyi analiz formalizovannykh metodov sinteza regulyatora sledyashchei sistemy [The comparative analysis of formalized methods of the synthesis of the tracking system regulator]. Pribory [Instrumentation], 2013. No. 1 (151). Pp. 39–44.

11. Kim D.P. Algebraicheskii metod sinteza lineinykh nepreryvnykh sistem upravleniya [Algebraic method of synthesis of linear continuous control systems]. Mekhatronika, avtomatizatsiya, upravlenie [Mechatronic, automation, control], 2011. No. 1. Pp. 9–15.

12. Ziegler J.G., Nichols N.B. Optimum setting for automatic controllers. Trans. ASME. 1942. Vol. 64. R. 759–768.

13. Farhan A.S. New efficient model-based PID design method. European Scientific Journal Edition. 2013. Vol. 9, No. 15. Pp. 181–190.

14. Sizykh V.N., Mukhopad A.Yu. Assotsiativnyi avtomat adaptivnogo upravleniya tekhnologicheskimi protsessami na osnove neironnykh setei [Associative automatic of adaptive control of technological processes based on neural networks.] Nauch. vestn. Novosib. gos. tekhn. un-ta [Scientific Bulletin of NSTU], 2014. No. 1 (54). Pp. 34–45.

15. Ageev A.M. Sizykh V.N. Sintez optimal'nykh regulyatorov sistemy upravleniya samoletom cherez reshenie obratnoi zadachi AKOR [Optimal regulators’ synthesis for the flight automatic control based on analytic construction problem in the singular formulation]. Nauch. vestn. Novosib. gos. tekhn. un-ta [Scientific Bulletin of NSTU], 2014. No. 3 (56). Pp. 7–22.

16. Leva A., Cox C., Ruano A. Hands-on PID autotuning: a guide to better utilization – IFAC Professional Brief. International Federation of Automatic Control. URL: http://www.ifac-control.org.

17. Izerman R. Tsifrovye sistemy upravleniya [Digital control systems]. Moscow: Mir Publ., 1984. 541 p.

18. Egupov N.D. (ed.). Metody robastnogo, neiro-nechetkogo i adaptivnogo upravleniya [Methods of robust, neuro-fuzzy and adaptive control]. Moscow: Bauman MGTU Publ., 2002. 744 p.

19. Rotach V.Ya. Teoriya avtomaticheskogo upravleniya [The theory of automatic control]. Moscow: MEI Publ., 2004. 400 p.

20. Sizykh V.N., Bakanov M.V. Algoritmicheskoe obespechenie adaptivnoi sistemy upravleniya avtonomnym mobil'nym robotom [Algorithmic support of an adaptive control system for an autonomous mobile robot]. Informatsionnye sistemy kontrolya i upravleniya v promyshlennosti i na transporte : sb. nauch. tr [Information systems for monitoring and control in industry and transport: coll. of research papers]. Issue 27. Irkutsk: IrGUPS Publ., 2017. Pp. 33–47.