Backup power supply of railway transport facilities based on intelligent network technologies

Receipt date: 
24.12.2019
Bibliographic description of the article: 

Zakaryukin V. P., Kryukov A. V., Lyubchenko I. A. Rezervnoe elektrosnabzhenie ob"ektov zheleznodorozhnogo transporta na baze tekhnologii intellektual'nykh setei [Backup power supply of railway facilities based on intelligent network technologies]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, Vol. 65, No. 1, pp. 119–128. 10.26731/1813-9108.2020.1(65).119-128

Section: 
Year: 
2020
Journal number: 
УДК: 
62-567.5:536.7
DOI: 

10.26731/1813-9108.2020.1(65).119-128

Article File: 
Pages: 
119
128
Abstract: 

There are objects in the railway transport that are of particular importance for the organization of the transportation process. They are classified as electricity consumers, requiring the implementation of an electricity supply system of increased reliability from three power sources. In modern conditions, the number of these consumers is growing. As a third source, diesel power plants are usually used, the operation of which requires the consumption of expensive energy resources. The article proposes an alternative way of organizing guaranteed power supply of such facilities from a 25 kV contact network using smart grid technologies. The electricity supply system includes the following devices: a phase number converter according to the Steinmetz reversed circuit, which is designed to convert a single-phase voltage into a symmetric three-phase system; active harmonic conditioner, which allows one to reduce the harmonic distortions created by electric locomotives; a controlled source of reactive power with the reactive power control range of –10 ... + 10 Mvar, which maintains the required voltage level at the point of connection of the line supplying the consumer. Computer studies were carried out using the Fazonord software package, designed to simulate the modes of electric power systems and railway power supply systems in phase coordinates. The calculation model is implemented for the electricity supply system of a two-track railway section with six traction substations. The results obtained allowed us to formulate the following conclusions: – reliable and high–quality power supply can be realized only on the basis of the integrated use of active elements, such as a phase number converter, active harmonic conditioner, and reactive power source. In the absence of the reactive power source, significant fluctuations in the voltage at the converter output are observed, as well as a noticeable asymmetry that almost reaches the limit of normal acceptable values. The total voltage harmonic coefficient in the absence of an active filter exceeds 20 %, and the shape of the voltage curve deviates significantly from the sine wave; – in the presence of the whole complex of devices, high quality of electricity is achieved at the consumer substation; – the modeling shows a low sensitivity of the  converter circuit under consideration to parameter control errors; – the existing voltage deviations associated with the narrow limits of the reactive power source (–10 ... + 10 Mvar) are of a short–term nature and do not exceed 5 % of the nominal value; – the modeling shows that the transmission of electricity through a single–wire line is possible for a considerable distance, reaching 25 km.

 

List of references: 

1.   German L.A., Serebryakov A.S. Reguliruemye ustanovki emkostnoi kompensatsii v sistemakh tyagovogo elektrosnabzheniya zheleznykh dorog [Adjustable capacitive compensation installations in railway traction power supply systems]. Moscow: FSBEI  "Educational and Methodological Center for Education in Railway Transport" Publ., 2013, 315 p.

2.   Ter-Oganov E.V., Pyshkin A.A. Elektrosnabzhenie zheleznykh dorog [Railway power supply]. Ekaterinburg: UrGUPS Publ., 2014. 432 p.

3.   Tret'yakov E.A. Issledovanie komponent intellektual'noi sistemy elektrosnabzheniya netyagovykh potrebitelei [Study of the components of an intelligent power supply system for non-traction consumers]. Innovatsionnye proekty i tekhnologii v obrazovanii, promyshlennosti i na transporte [Innovative projects and technologies in education, industry and transport]. Omsk, 2014, pp. 76–83.

4.   Tret'yakov E.A. Mul'tiagentnoe upravlenie raspredeleniem elektricheskoi energii v sisteme elektrosnabzheniya netyagovykh potrebitelei zheleznykh dorog [Multi-agent control of electric energy distribution in the power supply system of non-traction railway consumers]. Nauka i obrazovanie v XXI veke: teoriya, praktika, innovatsii [Science and Education in the XXI Century: Theory, Practice, Innovations]. Moscow: AR-Konsalt Publ., 2014, pp. 45–48.           

5.   Tret'yakov E.A. Povyshenie ekonomichnosti i propusknoi sposobnosti sistemy elektrosnabzheniya za schet upravleniya rezhimami i vnedreniya sovremennogo oborudovaniya i materialov [Improving the efficiency and throughput capacity of the power supply system by controlling the modes and introducing modern equipment and materials]. Sovremennye tendentsii razvitiya nauki i tekhnologii [Modern trends in the development of science and technology], 2015, No. 3-1, pp. 139–142.

6.   Tret'yakov E.A. Regulirovanie parametrov rezhima v sisteme elektrosnabzheniya netyagovykh potrebitelei zheleznykh dorog [Improving the efficiency and throughput of the power supply system by controlling the modes and introducing modern equipment and materials]. Omskii nauchnyi vestnik [Omsk Scientific Bulletin], 2015, No. 2 (140), pp. 155–159.

7.   Tret'yakov E.A. Effektivnost' nakopitelei elektroenergii v raspredelitel'nykh setyakh zheleznykh dorog [Efficiency of electric energy storage in distribution networks of railways]. Rossiya molodaya: peredovye tekhnologii v promyshlennost' [Young Russia: advanced technologies in industry], 2013, No. 2, pp. 347–349.

8.   Tret'yakov E.A., Malysheva N.N. Modelirovanie ustanovivshikhsya rezhimov sistemy elektrosnabzheniya netyagovykh potrebitelei [Modeling of steady-state modes of a power supply system for non-traction consumers]. Sovershenstvovanie elektromekhanicheskikh preobrazovatelei energii [Improving electromechanical energy converters]. Omsk, 2010, pp. 54–61.

9.   Valiyakhmetova V.K., Nikolaev V.L., Vlasova V.A. Povyshenie nadezhnosti elektrosnabzheniya netyagovykh potrebitelei zheleznykh dorog [Improving the reliability of power supply to non-traction rail consumers]. Sovremennye innovatsii v nauke, obrazovanii i tekhnike [Modern innovations in science, education and technology], 2018, pp. 27–29.

10. Shelomentsev A.O., Kosyakov A.A. Sovershenstvovanie organizatsii proektirovaniya sistem elektrosnabzheniya netyagovykh potrebitelei zheleznodorozhnogo transporta i raspredelitel'nykh setei obshchego pol'zovaniya [Improving the organization of designing power supply systems for non-traction railway consumers and public distribution networks]. Innovatsionnyi transport [Innovative Transport], 2012, No. 5 (6), pp. 15–19.

11. Drobov A.V., Galushko V.N., Alferov A.A.  et al. Opredelenie energeticheskoi effektivnosti elektrooborudovaniya netyagovykh zheleznodorozhnykh potrebitelei s pomoshch'yu imitatsionnogo modelirovaniya pri proektirovanii  [Determination of energy efficiency of electrical equipment of non-traction railway consumers using simulation modeling during design]. Vestnik Gomel'skogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo [The bulletin of Sukhoi Gomel State Technical University], 2017, No. 2 (69), pp. 95–105.

12. Mukharyamov R.I., Dobrynin E.V., Okladov S.A. Avtomatizatsiya kontrolya tekushchego sostoyaniya sistemy elektrosnabzheniya netyagovykh potrebitelei zheleznodorozhnogo transporta [Automation of control of the current state of the power supply system of non-traction consumers of railway transport]. Nauka i obrazovanie transportu [Science and education for transport], 2015, No. 1, pp. 136–138.

13. Ozhiganov N.V. Povyshenie kachestva elektroenergii dlya ZhAT [Improving the quality of electricity for railway automation and telemechanics]. Avtomatika, svyaz', informatika [Automation, communication, informatics], 2012, No. 1, pp. 22–26.

14. Oreshkov E.V. Upravlenie kachestvom elektroenergii v raspredelitel'nykh setyakh zheleznodorozhnogo transporta [Electricity quality management in distribution networks of railway transport]. Kachestvo v proizvodstvennykh i sotsial'no-ekonomicheskikh sistemakh [Quality in production and socio-economic systems]. Kursk, 2018, pp. 106–109.

15.  Drobov A.V., Galushko V.N., Alferov A.A.  et al. Opredelenie energeticheskoi effektivnosti elektrooborudovaniya netyagovykh zheleznodorozhnykh potrebitelei s pomoshch'yu imitatsionnogo modelirovaniya pri proektirovanii [Determination of energy efficiency of electrical equipment of non-traction railway consumers using simulation modeling during designing]. Vestnik Gomel'skogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo [The bulletin of Sukhoi Gomel State Technical University], 2017, No. 2 (69), pp. 95–105.

16. Zakaryukin V.P., Kryukov A.V., Cherepanov A.V. Intellektual'nye tekhnologii upravleniya kachestvom elektroenergii [Intelligent energy quality management technology]. Irkutsk: IrGTU Publ., 2015, 218 p.

17. Zakaryukin V.P., Kryukov A.V. Modelirovanie sistem elektrosnabzheniya s trekhfazno-odnofaznymi preobrazovatelyami [Modeling of power supply systems with three-phase-single-phase converters]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], Vol. 22, No. 5, 2018, pp. 122–133.

18. Ermolenko A.V., Ermolenko D.V. Perspektivy primeneniya sovremennykh ustroistv aktivnoi fil'tratsii dlya normalizatsii kachestva elektricheskoi energii v sisteme elektricheskoi tyagi peremennogo toka [Prospects for the use of modern active filtering devices to normalize the quality of electric energy in the AC electric traction system]. Vestnik VNIIZhT [The Vestnik of the Railway Research Institute], No. 5, 2009, pp. 7–12.

19. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh sistem [Complex asymmetric modes of electrical systems]. Irkutsk: Irkut. Un-ty Publ., 2005, 273 p.

20. Zakaryukin V. P., Kryukov A. V. Multifunctional Mathematical Models of Railway Electric System. Innovation & Sustainability of Modem Railway-Proceedings of ISMR’2008. Beijing China Railway Publishing House, 2008, pp. 504–508.