DEVELOPMENT AND MODELING OF A MACHINE DESIGN FOR THE SEPARATION OF NANOSCALE MATERIALS

Authors: 
Receipt date: 
15.09.2018
Bibliographic description of the article: 

Kolosov A. D. Razrabotka i modelirovanie konstruktsii mashiny dlya razdeleniya nanorazmernykh materialov [Development and modeling of a machine design for the separation of nanoscale materials]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System analysis. Modeling], 2018, Vol. 60, No. 4, pp. 8–15.  DOI: 10.26731/1813-9108.2018.4(60).8-15

Year: 
2018
Journal number: 
УДК: 
669.71:502.3
DOI: 

10.26731/1813-9108.2018.4(60).8-15

Article File: 
Pages: 
8
15
Abstract: 

The paper provides a brief overview of the existing methods of flotation separation, as well as an overview of the designs of flotation machines that are most common for today. It demonstrates the features of the structures used and highlights their main advantages and disadvantages. The problems in the flotation of finely dispersed raw materials to the classic designs of the flotation machines are presented. Column and impeller designs of flotation machines, the most widely used for the moment, are considered. The article studies characteristic features of these structures and formulates a number of requirements for a new design of the flotation machine, devoid of the shortcomings of classical flotation machines. On the basis of the selected characteristics, the requirements are worked out to which the flotation machine of the new design must comply. A number of technical solutions are proposed that allow the new flotation machine to meet these requirements. Technological subtleties of construction of some elements of the drawings used at plasma cutting of some assembly details are considered. A new design of the flotation machine has been developed, which meets modern requirements for simplicity and reliability of design, low production cost and high efficiency of the flotation separation. Special emphasis is placed on the maximum extraction of valuable product even with a very high dispersion of the processed material. A three-dimensional model is constructed, thanks to which the construction of complex geometric elements is optimized, and the metal consumption of the structure is calculated. The flotation machine of a new design is built according to the developed drawings and requires laboratory tests. With the help of this model, it was possible to generate the drawings of structural elements that are most difficult for the classical construction. According to the developed drawings, a laboratory flotation machine with a volume of 250 liters, made of corrosion-resistant steel of 08X18H10 grade, was manufactured.

Financing: 

Статья подготовлена при финансовой поддержке Министерства образования и науки РФ с использованием результатов работ, выполненных в ходе проекта 02.G25.31.0174 «Разработка комплексной ресурсосберегающей технологии и организация высокотехнологичного производства наноструктур на основе углерода и диоксида кремния для улучшения свойств строительных и конструкционных материалов» в рамках Программы реализации комплексных проектов по созданию высокотехнологичного производства, утвержденных постановлением Правительства РФ № 218 от 9 апреля 2010 г.

List of references: 

1. Nguyen A.V. et al. Chemical Engineering Science, 61 (2006), pp. 2494–2509.

2. Tao D., Yu S., Parekh B.K. Picobubble Enhanced Fine Coal Flotation. Proceedings of XV International Congress of Coal Preparation, China, 2006, Vol. 1, pp. 385-392.

3. Karlina A.I. Raschet proizvoditel'nosti promyvochnykh mashin i ustroistv [Calculation of productivity of washing machines and devices]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2015, No. 1 (45), pp. 54-62.

4. Druzhinina T.Ya., Nemarov A.A., Nebogin S.A. Osnovnye tipy konstruktsii otsadochnykh mashin [The main types of designs of jigging machines]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2016. No. 3 (51), pp. 88-92.

5. Sysoev I.A., Kondrat'ev V.V., Rzhechitskii A.E. Issledovanie primeneniya effekta Koandy dlya separatsii tselevoi fraktsii mikrochastits kvartsa [Study of the application of the Coanda effect for the separation of the target fraction of quartz microparticles]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2011, No. 11 (58), pp. 174-178.

6. Karlina A.I. Izuchenie struktury vnutrennikh techenii i volnovogo dvizheniya vodnogo i vzvesenesushchego potoka [Study of the structure of internal currents and wave motion of a water and a suspended flow]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University]. Irkutsk: IrGTU Publ., 2015, No. 4, pp. 137-145.

7. Yastrebov K.L., Dykusov G.E., Karlina A.I. Elaboration of technology and the way of reagent free complex preparation and purification of natural water & sewage. Science and Education, Material of the V international research and practice conference, Vol. II, February 27th – 28th, 2014, Munich, Germany, 2014, pp. 392–401. Publishing office Vela Verlag Waldkraiburg –Munich, Germany, 2014.

8. Karlina A.I. Issledovanie raboty gidroelevatorov i beznapornogo samotechnogo transporta [Study of the operation of hydraulic elevators and gravity-free gravity transport]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling]. Irkutsk: IrGUPS Publ., 2014, No. 4, pp. 62-69.

9. Karlina A.I. Izuchenie gidrodinamiki gravitatsionnogo obogashcheniya poleznykh iskopaemykh [Study of the hydrodynamics of gravitational enrichment of minerals]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University]. Irkutsk: IrGTU Publ., 2015, No. 3, pp. 194-199.

10. Kondrat'ev V.V., Nemchinova N.V., Ivanov N.A., Ershov V.A., Sysoev I.A. Novye tekhnologicheskie resheniya po pererabotke otkhodov kremnievogo i alyuminievogo proizvodstv [New technological solutions for recycling waste silicon and aluminum production]. Metallurg [Metallurgist], No. 5, 2013, pp. 92-95.

11. Kondrat'ev V.V., Yastrebov K.L., Ivanov N.A., Ershov V.A., Druzhinina T.Ya. Estestvennaya aeratsiya strui i potokov [Natural aeration of jets and streams]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2015, No. 10, pp. 80-87.

12. Kondrat'ev V.V., Nemarov A.A., Rzhechitskii A.E., Ivanov N.A., Lebedev N.V. Sposob izvlecheniya nanorazmernykh chastits iz tekhnogennykh otkhodov proizvodstva flotatsiei [The method of extraction of nano-sized particles from industrial wastes of production by flotation]. Patent for invention RUS 2500480 10.12.2013.

13. Rzhechitskii E.P., Kondrat'ev V.V. Sposob vydeleniya uglerodnykh nanochastits iz tekhnogennogo uglerodistogo materiala [The method of separation of carbon nanoparticles from man-made carbonaceous material]. Patent for invention RUS 2578319 27.03.2016

14. Nemarov A.A., Lebedev N.V. Razrabotka nauchnykh osnov povysheniya proizvoditel'nosti flotatsionnykh mashin i otsenka ikh ekonomicheskoi effektivnosti [Development of scientific principles for improving the performance of flotation machines and the assessment of their economic efficiency]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2015, No. 3 (47), pp. 79-82.

15. Nemarov A.A., Lebedev N.V., Karlina Yu.I. Teoreticheskie i eksperimental'nye issledovaniya parametrov pnevmogidravlicheskikh aeratorov [Theoretical and experimental studies of the parameters of pneumohydraulic aerators]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2015, No. 4 (48), pp. 44-50.

16. Kondrat'ev V.V., Nemarov A.A., Ivanov N.A., Karlina A.I., Ivanchik N.N. Teoriya i praktika protsessov flotatsionnogo obogashcheniya nanorazmernykh sred: monografiya [Theory and practice of the processes of flotation enrichment of nanoscale media: a monograph]. Irkutsk: IrGTU Publ., 2015, 160 p.

17. Kondrat'ev V.V., Karlina A.I., Nemarov A.A., Ivanov N.N. Rezul'taty teoreticheskikh i prakticheskikh issledovanii flotatsii nanorazmernykh kremniisoderzhashchikh struktur [Results of theoretical and practical studies of flotation of nanoscale silicon-containing structures]. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Tekhnika i tekhnologii [SibFU Journal. Engineering & Technologies], 2016, Vol. 9, No. 5, pp. 657-670.

18. Ivanchik N., Kondrat'ev V., Chesnokova A. Use of Nanosilica Recovered from the Finely Dispersed By-product of the Electrothermal Silicon Production for Concrete Modification. Procedia Engineering 2. Ser. "2nd International Conference on Industrial Engineering, ICIE 2016" 2016, pp. 1567-1573.

19. Kargapol'tsev S.K., Bol'shakov R.S. Dinamika mashin. Matematicheskoe obespechenie vychislitel'nogo modelirovaniya [Dynamics of cars. Mathematical software for computational modeling]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2011, No. 4 (32), pp. 23-30.

20. Ivanchik N.N., Balanovskii A.E., Kondrat'ev V.V., Tyutrin A.A., Kuz'min M.P. Otsenka primeneniya produktov pererabotki otkhodov kremniya v kachestve ul'tradispersnykh aktiviruyushchikh flyusov dlya dugovoi svarki [Evaluation of the use of waste products of silicon as ultrafine activating fluxes for arc welding]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2016, Vol. 20, No. 12 (119), pp. 165-172.

21. Kondrat'ev V.V., Ivanov N.A., Balanovskii A.E., Ivanchik N.N., Karlina A.I. Uluchshenie svoistv serogo chuguna kremniidioksid i uglerodnymi nanostrukturami [Improving the properties of gray iron, silicon dioxide and carbon nanostructures]. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Tekhnika i tekhnologii [SibFU Journal. Engineering & Technologies], 2016, Vol. 9, No. 5, pp. 671-685.

22. Kondrat'ev V.V., Ivanchik N.N., Petrovskaya V.N., Nemarov A.A., Karlina A.I. Pererabotka i primenenie melkodispersnykh otkhodov kremnievogo proizvodstva v stroitel'stve [Processing and application of fine silicon waste in construction]. V sbornike: Olon Ulsyn Betony XIV BAGA KhURAL Materialy mezhdunarodnogo stroitel'nogo simpoziuma [In the collection: Olon Ulsyn Concretes XIV BAGA KhURAL Materials of the international construction symposium], 2015, pp. 105-114.

23. Vorotilkin A.V., Gozbenko V.E., Kargapol'tsev S.K., Khomenko A.P., Korchevin N.A. Kompozitsiya dlya snizheniya iznosa v pare treniya koleso – rel's [Composition for the wear reduction in a friction wheel - rail pair]. Patent for invention RUS 2318013 01.09.2006.

24. Shastin V.I., Kargapol'tsev S.K. Laser modification of frictional surfaces. Russian Engineering Research, 2017, Vol. 37, No. 9, pp. 764-767.

25. Shastin V.I., Kargapoltcev S.K., Gozbenko V.E., Livshits A.V., Filippenko N.G. Results of the complex studies of microstructural, physical and mechanical properties of engineering materials using innovative methods. International Journal of Applied Engineering Research, 2017, Vol. 12, No. 24, pp. 15269-15272.

26. Kuz'min M.P., Kondrat'ev V.V., Larionov L.M., Kuz'mina M.Yu., Ivanchik N.N. Vozmozhnost' polucheniya splavov sistemy Al-Si s ispol'zovaniem amorfnogo mikrokremnezema [The possibility of producing alloys of the Al-Si system using amorphous microsilica]. Metallurg [Metallurgist], 2017, No. 1, pp. 101–105.

27. Kuz’min M.P., Kondrat’ev V.V., Larionov L.M., Kuz’mina M.Y., Ivanchik N.N. Possibility of preparing alloys of the Al–Si system using amorphous microsilica. Metallurgist, 2017, Vol. 61, pp. 86–91.

28. Kuz'min M.P., Kondrat'ev V.V., Larionov L.M., Zhalsanov B.G. Poluchenie siluminov s ispol'zovaniem amorfnogo mikrokremnezema [Obtaining silumin using amorphous microsilica]. Perspektivy razvitiya tekhnologii pererabotki uglevodorodnykh, rastitel'nykh i mineral'nykh resursov: materialy dokl. nauch.-prakt. konf. s mezhdunar. uchastiem, apr. 2017 g [Prospects for the development of technology for the processing of hydrocarbon, plant and mineral resources: materials reports. scientific-practical conf. from Intern. participation, Apr. 2017]. Irkutsk, 2017, pp. 48–50.