DEVELOPMENT OF SCIENTIFIC BASES OF PRODUCTIVITY INCREASE AND IM-PROVEMENT OF OPERATIONAL PARAMETERS OF EXPERIMENTAL HEAT EXCHANGER UNDER DIFFERENT OPERATION MODES

Authors: 
Receipt date: 
28.05.2017
Year: 
2017
Journal number: 
УДК: 
622.23.05+67.05
DOI: 

10.26731/1813-9108.2017.3(55).36-43

Article File: 
Pages: 
36
42
Abstract: 

In this paper, the authors have carried out instrumental measurements and calculations of thermal and aerodynamic parameters of the experimental heat exchanger (EHE) in different operating modes of the gas-cleaning unit: in interoperable mode or simulation of the anodes replacement operation. It has been determined that the drop in temperature of exhaust gases during the interoperable mode of the gas-cleaning unit amounted to 83.7 °C and ensured the reduction of the physical volume of gases by nearly 20 % (up to 58732,5 m3/h), which is a value that meets the requirements of the Technical specifications on ensuring the temperature reduction to not more than 140 °C, with a flow of gases through the heat exchanger up being to 75,000 m3/h. The gas flow rate corresponds to the design value (>10 m/s) to reduce mass of the dust deposits on the elements of the EHE design. Is should be assumed that after installation of equipment of automatic system for regulating the flow of coolant, it would become possible to control the coolant heating to use water for process needs and, as a consequence, to increase the cooling of the exhaust gases. According to the results of research on optimization of functioning of the experimental heat exchanger in various operational modes that are in force at JSC "RUSAL Sayanogorsk", the Document on adjustment of the preliminary design documentation for the experimental heat exchanger. To obtain more accurate data on the thermal and aerodynamic characteristics of the experimental heat exchanger and to accumulate the statistical data, it is necessary to conduct repeated studies after all the 8 electrolyzers are in normal operating mode, after installation and commissioning of all the elements of functional automation, as well as in summer.

Financing: 

Статья подготовлена при финансовой поддержке Министерства образования и науки РФ с использованием результатов работ, выполненных в ходе проекта 02.G25.31.0181 «Разработка сверхмощной энергоэффективной технологии получения алюминия РА-550» в рамках Программы реализации комплексных проектов по созданию высокотехнологичного производства, утвержденной постановлением Правительства РФ № 218 от 9 апреля 2010 г.

List of references: 

1.   Sysoev I.A., et al. Laboratornye ispytaniya kozhukhotrubchatogo teploobmennogo ustroistva [Laboratory tests of shell-and-tube heat exchanger device]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2016, Vol. 20, No. 12 (119), pp. 155–164.

2.   Kondrat'ev V.V., Nikolaev V.N., Karlina A.I. Modelirovanie i laboratornye ispytaniya vysokoeffektivnogo teploobmennika s nizkim statisticheskim soprotivleniem [Modeling and laboratory tests of a high-efficiency heat exchanger with low statistical resistance]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2015, No. 2 (46), pp. 80–83.

3.   Kondrat'ev V. et al. Description of the heat exchanger unit construction, created in IRNITU. International Journal of Applied Engineering Research, 2016, Vol. 11, No. 19, pp. 9979–9983.

4.   Sysoev I.A. et al. Razrabotka sposoba upravleniya energeticheskim rezhimom elektrolizerov dlya proizvodstva alyuminiya [Development of a method for controlling the energy regime of electrolyzers for the production of aluminum]. Tsvetnye metally [Non-ferrous metals], 2016, No. 5 (881), pp. 38–43.

5.   Shakhrai S.G., Kondrat'ev V.V., Belyanin A.V. Energo- i resursosberezhenie v proizvodstve alyuminiya [Energy and resource saving in aluminum production]. Irkutsk: ISTU Publ., 2014, 146 p.

6.   Shelekhov I.Yu. et al. Issledovaniya parametrov termoelektricheskikh generatorov izgotovlennykh po tolstoplenochnoi tekhnologii [Investigations of the parameters of thermoelectric generators manufactured by a thick-film technology]. Metallurgiya: tekhnologii, innovatsii, kachestvo [Metallurgy: technologies, innovations, quality]. In Protopopova E.V. (ed.), 2015, pp. 373–377.

7.   Kondrat'ev V.V., Rzhechitskii E.P. Puti resheniya problemy otlozhenii v apparatakh glinozemnogo proizvodstva [Ways to solve the problem of deposits in the apparatus of alumina production]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2011, No. 5 (52), pp. 120–125.

8.   Shakhrai S.G. et al. Okhlazhdenie anodnykh gazov alyuminievykh elektrolizerov v teploobmennikakh nagreva glinozema [Cooling of anode gases of aluminum electrolyzers in heat exchangers of alumina heating]. Metallurg [Metallurgist], 2015, No. 2, pp. 29–32.

9.   Doshlov O.I., Kondrat'ev V.V., Ugap'ev A.A. Primenenie tyazheloi smoly piroliza v kachestve komponenta svyazuyushchego dlya proizvodstva anodnoi massy [The use of a heavy pyrolysis resin as a component of a binder for the production of an anode mass]. Metallurg [Metallurgist], 2015, No. 5, pp. 72–77.

10. Kondrat'ev V.V. et al. Predvaritel'nyi nagrev obozhzhennogo anoda [Preheating the baked anode]. Tsvetnye metally [Non-ferrous metals], 2015, No. 1 (865), pp. 54–56.

11. Kondrat'ev V.V. et al. Snizhenie energozatrat v sistemakh gazoudaleniya i gazoochistki alyuminievykh elektrolizerov s obozhzhennymi anodami [Reduction of energy costs in gas removal and gas cleaning systems of aluminum electrolyzers with baked anode]. Sovremennoe sostoyanie i perspektivy uluchsheniya ekologii i bezopasnosti zhiznedeyatel'nosti Baikal'skogo regiona «Belye nochi-2016» [Current state and prospects for improving the ecology and life safety of the Baikal region "White Nights-2016"]. Irkutsk, 2016, Vol. 1, pp. 209–218.

12. Belyanin A.V., Karlina A.I. Nekotorye prikladnye aspekty povysheniya energeticheskoi effektivnosti alyuminievykh elektrolizerov [Some applied aspects of improving the energy efficiency of aluminum electrolyzers]. Prospekt Svobodnyi-2016 [Svobodnyi Avenue-2016]. Krasnoyarsk, 2016, pp. 4–9.

13.    Belyanin A.V. et al. Razrabotka meropriyatii okhlazhdeniya gazokhodnykh setei korpusov elektroliza [Development of measures for cooling the gas-flow networks of electrolysis blocks]. Prospekt Svobodnyi-2016 [Svobodnyi Avenue-2016]. Krasnoyarsk, 2016, pp. 10–14.

14. Doshlov O.I. et al. Kompaundirovanie kak perspektivnaya tekhnologiya proizvodstva al'ternativnykh svyazuyushchikh materialov dlya proizvodstva anodnoi massy [Compounding as a promising technology for the production of alternative binding materials for the production of anode mass]. Koks i khimiya [Coke and Chemistry], 2015, No. 1, pp. 34–41.

15. Shakhrai S.G. et al. Povyshenie energeticheskoi effektivnosti proizvodstva alyuminiya snizheniem gazonapylennosti elektrolita [Increasing the energy efficiency of aluminum production by reducing the gas-dust content of the electrolyte]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2015, No. 1 (25), pp. 103–107.

16. Shakhrai S.G. et al. Povyshenie effektivnosti gazoulavlivaniya v rabochei zone elektrolizerov s predvaritel'no obozhzhennymi anodami s siloi toka svyshe 300 kA [Improving the efficiency of gas collection in the working zone of electrolyzers with prebaked anodes with a current strength of over 300 kA]. Ekologiya i promyshlennost' Rossii [Ecology and industry of Russia], 2012, No. 7, pp. 8–11.

17. Kondrat'ev V.V. et al. Formation and utilization of nanostructures based on carbon during primary aluminum production. Metallurgist, 2016, Vol. 60, No. 7-8, pp. 877–882.

18. Nikolaev M.D. et al. Issledovanie problemy obrazovaniya otlozhenii v apparatakh glinozemnogo proizvodstva i puti ee resheniya [Investigation of the problem of formation of deposits in the apparatuses of alumina production and ways to solve it]. Transportnaya infrastruktura Sibirskogo regiona [Transport infrastructure of the Siberian region], 2015, Vol. 1, pp. 198–208.

19. Sysoev I.A. et al. Optimizatsiya konstruktsii teploobmennykh elementov pri proektirovanii teploobmennogo ustroistva [Optimization of the design of heat exchange elements in the design of a heat exchanger device]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2016, No. 4 (32), pp. 118–124.

20. Kuz'min M.P., Kuz'mina M.Yu. Povyshenie effektivnosti deyatel'nosti Irkutskogo alyuminievogo zavoda za schet uvelicheniya proizvodstva rondelei [Increase of efficiency of activity of Irkutsk aluminum plant due to increase in production of slugs]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2013, No. 2 (73), pp. 193–197.

21. Kuz'min M.P. Opredelenie ustoichivosti intermetallidov v tekhnicheskom alyuminii [Determination of the stability of intermetallic compounds in technical aluminum]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2013, No. 8 (79), pp. 138–143.

22. Kuz’min M.P., Begunov A.I. Thermodynamic stability of intermetallic compounds in technical aluminum. Zhurnal SFU. Tekhnika i tekhnologii [Journal of Siberian Federal University. Engineering and Technologies], 2014, Vol. 7, No. 2, pp. 132–137.

23. Kuz'min M.P. et al. Innovatsionnoe razvitie metallurgicheskogo kompleksa Irkutskoi oblasti [Innovative development of the metallurgical complex of the Irkutsk region]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2015, No. 5 (100), p. 236–240.

24. Nikolaev V.N., Kondrat'ev V.V. Tekhnologicheskoe reshenie intensifikatsii protsessov gazoudaleniya i gazoochistki alyumi-nievogo proizvodstva [ Technological solution of intensification of processes of gas removal and gas purification of aluminum production]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2012, No. 7 (66), p. 142–147.

25. Shakhrai S.G. et al. Utilizatsiya teploty anodnykh gazov alyuminievogo elektrolizera [Utilization of heat of anode gases of an aluminum electrolyzer]. Tsvetnye metally [Non-ferrous metals], 2016, No. 2 (878), pp. 52–56.

26. Kon-drat'ev V.V. et al. Analiz vliyaniya povysheniya sily i plotnosti anodnogo toka na pokazateli raboty elektrolizera Soderberga [Analysis of the effect of increasing the strength and density of the anode current on the performance of Soderberg electrolyzer]. Tsvetnye metally-2011 [Non-ferrous metals-2011], Krasnoyarsk, 2011, pp. 185–192.

27. Rzhechitskii E.P., Kondrat'ev V.V., Tenigin A.Yu. Tekhnologicheskie resheniya po okhrane okruzhayushchei sredy pri proizvodstve alyuminiya [Rzhechitsky EP, Kondratiev VV, Tenigin A.Yu. Technological solutions for environmental protection in the production of aluminum]. Irkutsk: ISTU Publ,. 2013, 159 p.

28. Shakhrai S.G., Korostovenko V.V., Rebrik I.I. Sovershenstvovanie sistem kolokol'nogo gazootsosa na moshchnykh elektroli-zerakh Soderberga [Perfection of systems of a bell-shaped gas pump on powerful Soderberg electrolyzers]. Krasnoyarsk: IPK SFU Publ., 2010, 146 p.

29. Kondrat'ev V.V. et al. Tekhniko-ekologicheskie i pravovye aspekty proizvodstva alyuminiya [Technical, environmental and legal aspects of aluminum production]. St. Petersburg:  MANEB Publ., 2011, 224 p.

30. Ershov V.A. et al. Vliyanie koeffitsientov fil'tratsii na dostovernost' prognoza izmeneniya napryazheniya alyuminievogo elektrolizera [Influence of the filtration coefficients on the reliability of the prediction of the voltage change of an aluminum electrolyzer]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2010, No. 5 (45), pp. 184–187.

31. Sysoev I.A. Opyt upravleniya energeticheskim rezhimom elektrolizerov s obozhzhennymi anodami (OD) na silu toka 300 kA [Experience in controlling the energy regime of electrolyzers with baked anodes (OD) at a current strength of 300 kA]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2007, Vol. 2, No. 2 (30), pp. 23–26.

32. Sysoev I.A. Issledovanie energeticheskogo sostoyaniya i razrabotka sposoba upravleniya teplovym rezhimom elektrolizerov bol'shoi edinichnoi moshchnosti : dis. … kand. tekhn. nauk [Investigation of the energy state and development of a method for controlling the thermal regime of electrolysers of a large unit capacity. Ph.D (Engineering) thesis]. Irkutsk National Research Technical University, Irkutsk, 2007.

33. Zel'berg B.I. et al. Spravochnik metallurga. Proizvodstvo alyuminiya i splavov na ego osnove [Handbook of metallurgists. Production of aluminum and alloys based on it]. Irkutsk : ISTU Publ., 2015, 764 p.

34. Kondrat'ev V.V. et al. Nanostruktury i alyuminievaya promyshlennost' [Nanostructures and aluminum industry]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2015, No. 8, pp. 77–85.

35. Shakhrai S.G. et. al. Obosnovanie vozmozhnosti nagreva glinozema teplom anodnykh gazov alyuminievogo elektrolizera [Substantiation of the possibility of heating alumina by the heat of anode gases of an aluminum cell]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2016, No. 3 (110), pp. 131–138.

36. Sysoev I.A., Nikolaev V.N. Modelirovanie i otsenka effektivnosti dvukhkonturnoi sistemy gazootvoda [Modeling and evaluation of the efficiency of a two-circuit gas extraction system]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2015, No. 3 (47), pp. 104–110.

37. Sysoev I.A. Upravlenie i kontrol' energorezhima elektrolizerov dlya proizvodstva alyuminiya [ Control and monitoring of the energy regime of electrolyzers for the production of aluminum]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2014. No. 4 (24). pp. 84–87.

38. Sysoev I.A. et al. Upravlenie teplovym protsessom elektroliza posredstvom opredeleniya khimicheskogo sostava elektrolita [ Control of the thermal process of electrolysis by determining the chemical composition of the electrolyte]. III Resp. nauch.-tekhn. konf. molodykh uchenykh i spetsialistov alyuminievoi i elektrodnoi promyshlennosti : tezisy dokl. [III Republican Scientific and Technical Conference of Young Scientists and Specialists of the Aluminum and Electrode Industry: Abstracts of Reports]. Irkutsk, 2005, pp. 54–55.

39. Sysoev I.A., Pinaev A.A., Nikolaev V.N. Apparaturno-tekhnologicheskaya skhema i avtomatizirovannyi kontrol' parametrov protsessa evakuatsii gazov [Instrument-technological scheme and automated control of parameters of disposal of gases]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2016, No. 1 (49), pp. 98–103.