ELECTROMAGNETIC SAFETY IN RAILROAD EXTERNAL POWER SUPPLY SYSTEMS

Receipt date: 
17.03.2019
Bibliographic description of the article: 

Buyakova N. V., Zakaryukin V. P., Kryukov A. V., Stepanov A. D. Elektromagnitnaya bezopasnost' v sistemakh vneshnego elektrosnabzheniya zheleznykh dorog [Electromagnetic safety in railroad external power supply systems]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 62, No. 2. Pp. 133–141. DOI: 10.26731/1813-9108.2019.2(62).133–141

Section: 
Year: 
2019
Journal number: 
УДК: 
621.311, 621.331
DOI: 

10.26731/1813-9108.2019.2(62).133–141

Article File: 
Pages: 
133
141
Abstract: 

The The purpose of the researches presented in the article consisted in the development of methods and means of adequate modeling of electromagnetic fields (EMF) near high-voltage transmission lines (TL) feeding AC railway traction substations. To analyze EMFs, modes of electrical power systems (EPS) were defined by means of methods based on models of elements in the form of latticed equivalent circuits with full-coherent topology. These models and methods are implemented in the software package Fazonord-APC, providing the modelling of EPS modes and also the definition of electromagnetic field intensities which is created by multiwire transmission lines. The article presents calculation results of electromagnetic fields created by the high-voltage power lines feeding traction substations. The first part provides results of EMF definitions on sites of a 220 kV two-chain transmission line. It is shown that electromagnetic field intensities on the transmission line route don't exceed allowable limits for electrical personnel. Levels of the intensities significantly depend on the phasing of the wires. The largest values are observed on the site which corresponds to the phasing on arrangement of the wires from top to down and from left to right as A, B, C, A, B, C. The second part presents the analysis of high-voltage transmission line EMF on the basis of a simulation modeling of the external and traction power supply integrated system. The results obtained show a larger variability magnetic field of 110 kV transmission line which borders closely on traction substations in comparison with main 220 kV transmission line. The EMF definition technique presented in the article can be used to solve problems of increase in electromagnetic safety in railroad external power supply systems.

List of references: 

1. Apollonskii S.M. Problemy elektromagnitnoi bezopasnosti na elektrifitsirovannoi zheleznoi doroge [Electromagnetic safety problems on electrified railways]. Vol. II. Elektromagnitnaya bezopasnost' na zheleznoi doroge s peremennym tokom v tyagovoi seti [Electromagnetic safety on the railway with alternating current in the traction network]. Moscow: RUSAINS Publ., 2017. 414 p.

2.   Sidorov A.I., Okrainskaya I.S. Elektromagnitnye polya vblizi elektroustanovok sverkhvysokogo napryazheniya [Electromagnetic fields near electrical installations of extra high voltage]. Chelyabinsk : YuUrGU Publ., 2008. 204 p.

3.   Ogunsola A., Mariscotti A. Electromagnetic Compatibility in Railways. London : Springer, 2013. 529 p.

4.   Ogunsola A., Reggiani U., Sandrolini L. Modelling Electromagnetic Fields Propagated from an AC Electrified Railway Using TLM. International Symposium on Electromagnetic Compatibility, EMC’09. Kyoto, 2009. Pp. 567–570.

5.   Sheilah Frey. Railway Electrification Systems & Engineering. White Word Publications, Delhi, 2012. 145 p.

6.   Biesenack H., Braun E., George G., etc. Energieversorgung elektrischer bannen. Wiesbaden : B.G. Teubner Verlag, 2006. 732 p.

7.   Steimel A. Electric traction motive power and energy supply. Basics and practical experience. Munchen : Oldenbourg Industrieverlag, 2008. 334 p.

8.   Kircher R., Klühspies J., Palka R. et al. Electromagnetic Fields Related to High Speed Transportation Systems. Transportation Systems and Technology, 2018. No. 4 (2). Pp. 152–166.

9.   Luan Xiaotian, Zhu Haijing, Qiu Bo, Han Bochong. EMC in Rail Transportation. CUE 2016-Applied Energy Symposium and Forum.

10. Zakirova A.R., Bukanov Zh.M. Issledovaniya elektromagnitnykh polei na rabochikh mestakh personala, obsluzhivayushchego kontaktnuyu set' [Studies of electromagnetic fields in the workplaces of personnel serving the contact network]. Vestn. Ural. gos. un-ta putei soobshch. [Herald of the Ural State University of Railway Transport], 2016. No. 2 (30). Pp. 73–83.

11. Zakirova A.R., Bukanov Zh.M. Vozdeistvie postoyannogo elektricheskogo polya na elektrotekhnicheskii personal tyagovogo elektrosnabzheniya [The impact of a constant electric field on the electrical personnel traction power supply]. Elektrobezopasnost' [Electrical safety], 2014. No. 1. Pp. 33–38.

12. Zakirova A.R. Zashchita elektrotekhnicheskogo personala ot vrednogo vozdeistviya elektromagnitnykh polei [Protection of electrical personnel from the harmful effects of electromagnetic fields]. Ekaterinburg: UrGUPS Publ., 2018. 171 p.

13. Kosarev A.B., Kosarev B.I. Osnovy elektromagnitnoi bezopasnosti sistem elektrosnabzheniya zheleznodorozhnogo transporta [Fundamentals of Electromagnetic Safety of Railway Power Supply Systems]. Moscow: Intekst Publ., 2008. 480 p.

14. Bader M.P. Elektromagnitnaya sovmestimost' [Electromagnetic compatibility.]. Moscow: UMK MPS Publ., 2002. 638 p.

15. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Elektromagnitnaya bezopasnost' v sistemakh elektrosnabzheniya zheleznykh dorog: modelirovanie i upravlenie [Electromagnetic safety in power supply systems of railways: modeling and control]. Angarsk : AnSTU Publ., 2018. 382 p.

16. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh system [Complex non-symmetrical modes of electrical systems]. Irkutsk : Irkut. state un-ty Publ., 2005. 273 p.

17. Zakaryukin V.P., Kryukov A.V. Determination of the induced voltages when nonparallel power lines are adjacent to one another. Power Technology and Engineering, 2015. Vol. 49, No. 4. Pp. 304–309.

18. Zakaryukin V.P., Kryukov A.V. Multifunctional Mathematical Models of Railway Electric Systems. Innovation & Sustainability of Modern Railway – Proceedings of ISMR’2008. Beijing : China Railway Publishing House, 2008. Pp. 504–508.

19. Buyakova N., Zakarukin V., Kryukov A. Imitative Modelling of Electromagnetic Safety Conditions in Smart Power Supply Systems. Advances in Intelligent Systems Research. Vol. 158. : Vth International workshop “Critical infrastructures: contingency management, intelligent, agent-based, cloud computing and cyber security” (IWCI 2018), 2018. Pp. 20–25.

20. Buyakova N., Zakaryukin V., Kryukov A. et al. Electromagnetic Safety Enhancing in Railway Electric Supply Systems. E3S, Web of Conferences 58, 01006(2018) RSES 2018. Pp. 1–6.

21. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Modeling of electrical fields in railway engineering structures. Advances in Engineering Research. Vol. 158. International Conference on Aviamechanical Engineering and Transport (AviaENT 2018), 2018. Pp. 219–225.