FUZZY CONTROL OF THE HUMAN-MACHINE SYSTEM BASED ON AN ENTROPY AP-PROACH AND AN ANTHROPOCENTRIC MODEL OF THE OPERATOR

Receipt date: 
10.10.2017
Year: 
2017
Journal number: 
УДК: 
681.5
DOI: 

10.26731/1813-9108.2017.4(56).144-151

Article File: 
Pages: 
144
151
Abstract: 

The article is focused on the problem of creating a system to prevent hazardous situations as a man-machine management system (CHMSU). The UMBMS is proposed to be built as a three-level integrated control system that operates in a real and accelerated time scale to assess a critical contingency situation. On the basis of formalized information of the operator activity model (OAM), an anthropocentric approach to its further formalization is selected. According to this approach, the operator is not described as a link of the dynamic system, but is an external regulator for the trajectory control level of the aircraft. As such a regulator, it is proposed to use the membership function from the fuzzy logic apparatus (the pilot error function) and the informational (anthropocentric) OAM, which is the reliability dependency of any pilot operations on the errors in performing these operations. In the proposed methodology of the building of the integrated ACS, external disturbances and uncertainties play the role of information "feeding" and allow organizing an antientropic process of self-organization by calculating the latent time of the operator for the decision- making.

List of references: 

1. Sizykh V.N. Optimizatsiya protsessov upravleniya v integrirovannom bortovom komplekse letatel'nogo apparata na osnove algoritmov s prognozirovaniem [Optimization of control processes in the integrated airborne complex of an aircraft based on algorithms with forecasting]. Irkutsk: IVVAIU (VI) Publ., 2007, 439 p.

2. Sizykh V.N., Daneev A.V., Palatov D.A. Metodologiya priblizhenno-optimal'nogo sinteza nechetkikh regulyatorov po skheme uluchsheniya i lokalizatsii [Methodology of approximate-optimal synthesis of fuzzy regulators according to the scheme of improvement and localization]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2016, No. 1 (49), pp. 103–111.

3. Saridis G.N. Architectures for Intelligent Control. – Intelligent Control Systems. Theory and Applications / In: M.M. Gurta, N.K. Sinha (eds.), The IEEE, Inc., New York, 1996, pp. 127–148.

4. Panchenkov A.N. Entropiya [Entropy]. N. Novgorod: Intelservis Publ., 1999, 592 p.

5.  Panchenkov A.N. Entropiya – 2: Khaoticheskaya mekhanika [Entropy - 2: Chaotic mechanics]. N. Novgorod: Intelservis Publ., 2002, 712 p.

6. Krylov A.A., Sizykh V.N., Chumak A.G.  Metodika strukturno-parametricheskogo sinteza neirosetevoi modeli prodol'nogo dvizheniya vozdushnogo transportnogo sredstva [Method of structural-parametric synthesis of the neural network model of the longitudinal motion of an air vehicle]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2011, No. 1 (29), pp. 129–134.

7. Krylov A.A., Ozerov V.N., Sizykh V.N. Neirosetevaya sistema avtomaticheskogo upravleniya samoletom v rezhime dempfirova-niya [Neural network control system of the aircraft in the damping mode]. Vestn. Voronezh. gos. tekhn. un-ta [], 2011, No.1, Vol. 7, pp. 189–194.

8. Mukhopad Yu.F., Pashkov N.N., Sizykh V.N. Adaptivnyi podkhod k neironnomu upravleniyu odnim klassom absolyutno ustoi-chivykh system [Adaptive approach to neural control of one class of absolutely stable systems]. Fundamental'nye issledovaniya [Fundamental research], 2011, No. 8, pp. 139–147.

9. Sizykh V.N., Shlykova I.A. Adaptivnoe neiroupravlenie tipovym tekhnologicheskim modulem na osnove metoda skorostnogo gradient [Adaptive neural control by a typical technological module based on the speed gradient method]. Mekhanika i protsessy upravleniya: materialy XXXXI Vseros. Simpoziuma [Mechanics and control processes: materials of the XXXXIth All-Russian symposium]. Moscow: RAS Publ., 2011, Vol.2, pp. 246–255.

10. Daneev A.V. Entropiya A.N. Panchenkova [A.N. Panchenkov’s Entropy]. A.N. Panchenkov: fizik, matematik, inzhener [A.N. Panchenkov: a physicist, a mathematician, an engineer]. Irkutsk: Irkutsk State Technical University Publ., 2005, pp. 103–128.

11. Daneev A.V., Rusanov V.A, Kumenko A.E. Entropiologiya sil'nykh  differentsial'nykh modelei i ikh Fur'e-analiz [Entropyology of strong differential models and their Fourier analysis]. A.N. Panchenkov: fizik, matematik, inzhener [A.N. Panchenkov: a physicist, a mathematician, an engineer]. Irkutsk: Irkutsk State Technical University Publ., 2005, pp. 167–189.

12. Daneev A.V., Rusanov V.A,  Sharpinskii D.Yu. Printsip maksimuma entropii v strukturnoi identifikatsii dinamicheskikh sistem [The principle of maximum entropy in the structural identification of dynamical systems]. Izv. vuzov. Matematika [Russian Mathematics (Iz. VUZ)], 2005, No. 11, pp. 64–69.

13. Daneev A.V., Vorob'ev A.A., Lebedev D.M. Algoritmy upravleniya slozhnymi organizatsionno-tekhnicheskimi sistemami [Algorithms for managing complex organizational and technical systems]. Izvestiya IGEA [Bulletin of Baikal State University], 2010, No. 4 (72), pp. 83–87.

14. Daneev A.V., Vorob'ev A.A., Lebedev D.M., Kumenko A.E., Mastin A.B.  Metodika formirovaniya kompleksa sredstv uprav-leniya slozhnoi organizatsionno-tekhnicheskoi sistemoi [The method of forming a complex of management tools of a complex organizational and technical system]. Vestn. BGU [The Buryat State University Bulletin], Issue 9, 2010, pp. 263–269.

15. Daneev A.V., Vorob'ev A.A., Lebedev D.M. Issledovanie dinamiki povedeniya slozhnykh organizatsionno-tekhnicheskikh sistem v usloviyakh vozdeistviya neblagopriyatnykh faktorov [Investigation of the dynamics of behavior of complex organizational and technical systems under the influence of unfavorable factors]. Vestn. Voronezh. in-ta MVD Rossii [The bulletin of Voronezh Institute of the Ministry of Internal Affairs of Russia], 2010, No. 2, pp. 163–172.