MODELING ELECTROMAGNETIC FIELDS ARISING IN PLACES OF INTERSECTION OF TRACTION NETWORKS AND OVERHEAD POWER TRANSMISSION LINES

Receipt date: 
25.09.2019
Bibliographic description of the article: 

Buyakova N. V., Kryukov A. V., Seredkin D. A. Modelirovaniye elektromagnitnykh poley, voznikayushchikh v me-stakh peresecheniya tyagovykh setey i vozdushnykh liniy elektrope-redachi [Modeling electromagnetic fields arising in places of intersection of traction networks and overhead power transmission lines]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 64, No. 4. Pp. 138–147. DOI: 10.26731/1813-9108.2019.4(64). 138-147

Section: 
Year: 
2019
Journal number: 
УДК: 
621.331:621.311
DOI: 

10.26731/1813-9108.2019.4(64).138–147

Article File: 
Pages: 
138
147
Abstract: 

25-kV traction networks (TN) create increased electromagnetic fields (EMF) with a frequency of 50 Hz, the tension of which at a standard height of 1.8 m, as a rule, does not exceed the permissible standards for electrical personnel. In places where railways intersect with high-voltage overhead power transmission lines, the fields created by the traction network and power lines overlap. This can result in an increase in tension and a complication of the spatial structures of the electromagnetic field. Enhanced electromagnetic fields can generate interference, causing disturbances in the normal functioning of electrical and electronic devices, as well as adversely affect personnel working in areas of joint electromagnetic exposure to vehicles and power tranmission lines. The article presents a methodology for determining the stresses created at intersections, and simulation results performed for a standard situation when a 220-kV overhead power transmission line crosses a TN of 25 or 2x25 kV at an angle of 90 degrees. The algorithm for calculating the resulting EMF strengths includes the following steps: to calculate the TN and power transmission lines in phase coordinates, the results of which determine the potentials and currents of all wires; to calculate the vertical and horizontal components of the EMF strengths; to calculate amplitude values of the strengths at the intersection taking into account possible elliptical polarization. The strengths were determined using the Fazonord software package. The simulation results showed that the maxima of the amplitudes of the magnetic field strength at the intersection of the 25-kV traction network and 220-kV power lines reach 83 A/m. A similar parameter for the electric field is 5.4 kV/m. For a 2×25 kV traction network, these values are reduced to 32 A/m and 4 kV/m, respectively.

List of references: 
  1. Sidorov A.I., Okrainskaya I.S. Elektromagnitnye polya vblizi elektroustanovok sverkhvysokogo napryazheniya [Electromagnetic fields near electrical installations of extra-high voltage]. Chelyabinsk: YuUrGU Publ., 2008. 204 p.
  2. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Elektromagnitnaya bezopasnost' v sistemakh elektrosnabzheniya zheleznykh dorog: modelirovanie i upravlenie [Electromagnetic safety in railway power supply systems: modeling and control]. Angarsk: AnGTU Publ., 2018. 382 p.
  3. Kosarev A.B., Kosarev B.I. Osnovy elektromagnitnoi bezopasnosti sistem elektrosnabzheniya ZhD transporta [Fundamentals of electromagnetic safety of railway power supply systems]. Moscow: Intekst Publ., 2008. 480 p.
  4. Apollonskii S.M., Kalyada T.V., Sindalovskii B.E. Bezopasnost' zhiznedeyatel'nosti cheloveka v elektromagnitnykh polyakh [Life safety in electromagnetic fields]. St. Petersburg: Politekhnika Publ., 2006. 263 p.
  5. Apollonskii S.M., Gorskii A.N. Raschety elektromagnitnykh polei [Calculating electromagnetic fields]. Moscow: Marshrut Publ., 2006. 992 p.
  6. Ustinov A.A. Raschet elektricheskikh polei analiticheskim metodom po mgnovennym znacheniyam [Calculation of electric fields by an analytical method according to instantaneous values ​​]. Povyshenie effektivnosti proizvodstva i ispol'zovaniya energii v usloviyakh Sibiri [Improving the efficiency of energy production and use in Siberia]. Irkutsk: IrGTU Publ., 2005, pp. 517-525.
  7. Rubtsova N.B., Misrikhanov M.Sh., Sedunov V.N., Tokarskii A.Yu. Al'ternativnye varianty obespecheniya elektromagnitnoi bezopasnosti linii elektroperedachi [Alternative options for ensuring electromagnetic safety of power lines]. Izv. Samarskogo nauchnogo tsentra RAN [The news of Samara Scientific Center of the Russian Academy of Sciences], Vol. 14.  No. 5(3). 2012, pp. 839-845.
  8. Kircher R., Klühspies J., Palka R. et al. Electromagnetic Fields Related to High Speed Transportation Systems. Transportation Systems and Technology. 2018. No. 4(2). pp. 152-166.
  9. Ogunsola A., Mariscotti A. Electromagnetic Compatibility in Railways. London: Springer, 2013, 529 p.
  10. Ogunsola A., Reggiani U., Sandrolini L. Modelling Electromagnetic Fields Propagated from an AC Electrified Railway Using TLM. International Symposium on Electromagnetic Compatibility, EMC’09. Kyoto, 2009, pp. 567-570.
  11. Sheilah Frey. Railway Electrification Systems & Engineering. White Word Publications, Delhi 2012. 145 p.
  12. Zakirova A.R., Bukanov Zh.M. Issledovaniya elektromagnitnykh polei na rabochikh mestakh personala, obsluzhivayushchego kontaktnuyu set' [Studies of electromagnetic fields at workplaces of personnel serving the contact network]. Vestnik Ural'skogo gosudarstvennogo universiteta putei soobshcheniya [The Bulletin of the Ural State University of Railway Engineering], No. 2 (30). 2016, pp. 73-83.
  13. Zakirova A.R. Zashchita elektrotekhnicheskogo personala ot vrednogo vozdeistviya elektromagnitnykh polei [Protection of electrical personnel from the harmful effects of electromagnetic fields]. Ekaterinburg: UrGUPS Publ., 2018. 171 p.
  14. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh system [Complex asymmetric modes of electrical systems]. Irkutsk: Irkut. un-ty Publ., 2005, 273 p.
  15. Zakaryukin V.P., Kryukov A.V. Elektromagnitnaya bezopasnost' v mestakh peresecheniya vysokovol'tnykh LEP i elektrifitsirovannykh zheleznykh dorog [Electromagnetic safety at the intersection of high-voltage power lines and electrified railways]. Transportnaya infrastruktura Sibirskogo regiona. V 2-kh tt. [The transport infrastructure of the Siberian region]. In 2 p. Vol. 1. Irkutsk, 2018, pp. 641–650.
  16. Zakaryukin V.P., Kryukov A.V., Buyakova N.V. Improvement of Electromagnetic Environment in Traction Power Supply Systems. The power grid of the future. Proceeding No. 2. Otto-von-Guericke University Magdeburg. Magdeburg. 2013, pp. 39-44.
  17. Buyakova N., Zakarukin V., Kryukov A. Imitative Modelling of Electromagnetic Safety Conditions in Smart Power Supply Systems. Advances in Intelligent Systems Research. Vol. 158. V International workshop “Critical infrastructures: contingency management, intelligent, agent-based, cloud computing and cyber security” (IWCI 2018), 2018. pp. 20-25.
  18. Buyakova N., Zakaryukin V., Kryukov A., Nguyen T. Electromagnetic Safety Enhancing in Railway Electric Supply Systems. E3S, Web of Conferences 58, 01006(2018) RSES 2018, pp. 1-6.
  19. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Modeling of electrical fields in railway engineering structures. Advances in Engineering Research. Vol. 158. International Conference on Aviamechanical Engineering and Transport (AviaENT 2018). 2018, pp. 219-225.
  20. Kats R.A., Perel'man L.S. Raschet elektricheskogo polya trekhfaznoi linii elektroperedachi [Calculation of the electric field of a three-phase power line]. Elektrichestvo [Electricity], No. 1. 1978, pp. 16-19.