Modeling of the equivalent circuit of high voltage insulation containing several occlusions (local inhomogeneities)

Receipt date: 
20.01.2020
Bibliographic description of the article: 

Kutsenko S. M., Klimov N. N. Kompleksnoe reshenie problemy razvitiya tekhnicheskogo osnashcheniya in-frastruktury magistral'nogo transporta [Modeling of the equivalent circuit of high voltage insulation containing several occlusions (local inhomogeneities)]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, Vol. 66, No. 2, pp. 37–42. DOI: 10.26731/1813-9108.2020.2(66).37-42

Year: 
2020
Journal number: 
УДК: 
004.94, 539.3
DOI: 

10.26731/1813-9108.2020.2(66).37-42

Article File: 
Pages: 
37
42
Abstract: 

There are many methods for assessing the state of high voltage insulation. All of them directly or indirectly register surface partial discharges or partial discharges that form on the surface and / or inside the dielectric. One of the reasons for the destruction of insulation is precisely the large number of such discharge processes. Our simulation of the equivalent circuit for high-voltage insulation allows, most importantly, to conduct a temporary analysis of the transient process that occurs when a pulse voltage is applied to the high-voltage insulation, to see and evaluate the time of the transient process from the beginning of the simulation to the onset of a stable operation mode of the model. The article presents the operation modes of the circuit, which simulate the formation of a partial discharge by the operation of an electronic key or keys, in the case of modeling two occlusions (two partial discharges). The equivalent clearance circuit used in the simulation is based on the classical theory of the formation of partial discharges in high-voltage insulation, but taking into account the features that allow achieving more reliable results that coincide with experimental data. Also, the equivalent circuit model allows you to evaluate the temporal parameters of the discharge by changing the electrical values of the elements of the equivalent circuit. This allows us to conclude that there is an approximate number of partial discharges inside the insulation. Significant differences were noted between the time of the transition process in circuits containing a different number of local inhomogeneities (occlusions). Such an analysis as an assessment of the duration of the transition process can undoubtedly be used as one of the criteria for the state of high-voltage insulation, draw conclusions about its further operation, and plan the timing of replacement of insulation.

List of references: 
  1. Kuchinskii G.S. Chastichnye razryady v vysokovol'tnykh konstruktsiyakh [Partial discharges in high-voltage structures]. St. Petersburg: Energiya Publ., Leningrad dept., 1979, 224 p.
  2. Vdoviko V.P. Chastichnye razryady v diagnostirovanii vysokovol'tnogo oborudovaniya [Partial discharges in the diagnosis of high-voltage equipment]. Novosibirsk: Nauka Publ., 2007, 155 p.
  3. Rusov V.A. Izmerenie chastichnykh razryadov v izolyatsii vysokovol'tnogo oborudovaniya [Partial discharge measurement in the isolation of high-voltage equipment]. Ekaterinburg: UrGUPS Publ., 2011, 367 p.
  4. Korobeinikov S.M., Vechorkin M.V. Fizika vozniknoveniya, kharakteristiki i klassifikatsiya chastichnykh razryadov v vysokovol'tnom oborudovanii [Physics of occurrence, characteristics and classification of partial discharges in high-voltage equipment]. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical systems and complexes]. Nosov Magnitogorsk State Technical University Publ., 2010, Vol. 18, pp. 204–211.
  5. Polyakov D.A., Nikitin K.I., Tereshchenko N.A., Novosolov A.S., Bilevich Ya.P. Issledovanie chastichnykh razryadov v opornykh izolyatorakh [Investigation of partial discharges in support insulators]. Omskii nauchnyi vestnik [Omsk scientific bulletin], 2020, No. 1 (169), pp. 32–38.
  6. Poluyanovich N.K., Dubyago M.N. Analiz kharakteristik i issledovanie teplovogo proboya izolyatsionnykh materialov, vyzvannykh chastymi razryadami [Analysis of characteristics and investigation of thermal breakdown of insulating materials caused by partial discharges]. Nauchnyi vestnik NGTU [Scientific Herald of Nizhny Novgorod State Technical University], 2018, Vol. 71, No. 2, pp. 157–174.
  7. Kupershtokh A.L., Karpov D.I. “Relay-race” mechanism of partial discharges in a long chain of cavities for stochastic nature of process. Journal of electrostatics, 2018, Vol. 94, pp. 8–13.
  8. Zhuang T., Ren M., Xie J., Zhang C., Duan R., Dong M. Slow current induced by partial discharge in kapton, epoxy and pet. IEEE transactions on dielectrics and electrical insulation, 2019, Vol. 26, No. 3, pp. 955–963.
  9. Korobeinikov S.M., Ridel A.V., Karpov D.I., Ovsyannikov A.G., Meredova M.B. Mechanism of Partial Discharges in Free Helium Bubbles in Transformer Oil. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, Vol. 26, No. 5, pp. 1605–1611.
  10. Korobeinikov S.M., Ovsyannikov A.G., Ridel A.V., Karpov D.I., Lyutikova M.N., Kuznetsova Yu.A., Yassinskii V.B. Study of partial discharges in liquids. Journal of Electrostatics, 2020, No. 103. 1034120304-3886/© 2019 Elsevier B.V.
  11. Ovsyannikov A.G., Korobeinikov S.M., Vagin D.V. Svyaz' kazhushchegosya i istinnogo zaryadov chastichnykh razryadov [The relationship of the apparent and true charges of partial discharges]. Elektrichestvo [Electricity], 2014, No. 8, pp. 37–43.
  12. Korobeinikov S.M., Ridel A.V., Medvedev D.A., Karpov D.I., Ovsyannikov A.G., Meredova M.B. Registration and simulation of partial discharges in free bubbles at AC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, Vol. 26, Iss. 4, pp. 1035–1042.
  13. Kinsht N.V., Petrun'ko N.N. Ob otsenke parametrov chastichnykh razryadov [On the estimation of the parameters of partial discharges]. Elektrichestvo [Electricity], 2016, No. 6, pp. 51–56.
  14. Kutsenko S.M., Klimov N.N. Diagnostics of high-voltage insulation of the railway transport overhead system by the method of spaced antennas. IOP Conference Series: Materials Science and Engineering, Volume 760, International Conference on Transport and Infrastructure of the Siberian Region (SibTrans-2019) 12–15 November 2019, Moscow, Russian Federation.
  15. Kovrigin L.A. Modelirovanie chastichnykh razryadov v izolyatsii kabelei srednego napryazheniya [ Modeling of partial discharges in the insulation of medium-voltage cables]. Elektrotekhnika [Electrical engineering], 2013, No. 11, pp. 49–51.
  16. Ovsyannikov A.G., Korobeynikov S.M., Vagin D.V. Apparent and True Charges of Partial Discharges. IEEE Trans. on Dielectrics and Electrical Insulation, 2017, Vol. 24, No. 6, pp. 3687–3693.
  17. Kupershtokh A.L., Stamatelatos S.P., Agoris D.P. Modelirovanie chastichnykh razryadov v tverdykh dielektrikakh na peremennom napryazhenii [Modeling of partial discharges in solid dielectrics with alternating voltage].  Pis'ma v zhurnal tekhnicheskoi fiziki [Letters in the journal of technical physics], 2006, Vol. 32, Iss. 15, pp. 74–81.
  18. Kryukov A.V., Zakaryukin V.P. Kontseptsiya intellektual'noi sistemy tyagovogo elektrosnabzheniya [The concept of an intelligent traction power supply system]. Innovatsionnyi transport [Innovative transport], 2015, No. 1(15), pp. 59–65.