Receipt date: 
Journal number: 


Article File: 

The development strategy of the traffic management organization sets high standards on the quality of navigation definitions of dynamic controlled objects. In real conditions, the accuracy of determining the parameters of the trajectory motion is affected by the lateral wind, various kinds of perturbations and disturbances. The article proposes a model of trajectory motion of a dynamic controlled object based on complex information processing in a triad integrated navigation system. The developed model can be used for standard navigation calculations in describing the movement of mobile objects in the horizontal plane on straight sections, as well as the turnaround process. It is shown that the errors in navigational definitions lead to a deviation of the estimated values of the parameters of the trajectory motion from the true ones. Therefore, when forming the flight path, it is necessary to take into account the errors in estimating the parameters of the trajectory motion under the influence of destabilizing factors. The algorithm for optimizing the trajectory in the state space is synthesized based on the methods of optimal control theories and optimal filtering. The situation was simulated for the formation of a controlled motion trajectory based on the solution of the problem of navigational and temporal determinations in a triad integrated navigation system based on inertial and satellite technologies. Using the methods of simulation statistical modeling, the characteristics of the proposed model of the trajectory motion and the algorithm for complex processing of navigation information are investigated. The results of calculation of navigational parameter estimates on the basis of the filtering algorithm in the on-board computer system are presented.

List of references: 

1. Dil' V.F., Sizykh V.N. Sintez optimal'nogo upravleniya vozdushnym sudnom na osnove uravnenii nelineinoi dinamiki [Synthesis of optimal control of an aircraft based on the equations of nonlinear dynamics]. Nauchnyi vestnik MGTU GA [Scientific Bulletin of Moscow State Technical University of Civil Aviation], 2017, Vol. 20, No. 03, pp. 139−148.

2. Akhmedov R.M. et al. Avtomatizirovannye sistemy upravleniya vozdushnym dvizheniem [Automated air traffic control systems]. Novye informatsionnye tekhnologii v aviatsii [New Information Technologies in Aviation]. St. Petersburg: Politekhnika Publ., 2004, 446 p.

3. Maolaaisha A. Free-Flight Trajectory Optimization by Mixed Integer Programming. A thesis submitted to fulfillment of the requirements for the degree of master in science. Angewandte Mathematik und Optimierung Schriftenreihe (AMOS) # 24. University of Hamburg, 2015, 74 p.

4. Wickramasinghe N.K., Harada A., Miyazawa Y. Flight trajectory optimization for an efficient air transportation system. Proceedings of the 28th International Congress of the Aeronautical Sciences, 2012. pp. 1−12.

5. Rub´en Ant´on Guijarro. Commercial aircraft trajectory optimization using optimal control. Bachelor Thesis, Universidad Carlos III de Madrid, 2015, p. 64.

6. Soler M., Olivares A., Staffetti E., Bonami P. Multiphase Mixed-Integer Optimal Control Approach to Aircraft Trajectory Optimization. Journal of Guidance, Control, and Dynamics, 2013. No. 36 (5) pp. 1267−1277.

7. Toratani D. Study on Simultaneous Optimization Method for Trajectory and Sequence of Air Traffic Management. Doctoral Thesis. Yokohama National University. March, 2016, pp. 101.

8. Voronov E.M., Karpunin A.A. Obespechenie traektornoi bezopasnosti v zadache obleta dinamicheskoi krugovoi zony [Providing path safety in the task of flying around a dynamic circular zone]. Nauka i obrazovanie [Nauka i Obrazovanie], 2011, No. 12, pp. 1−12. Electron. sci.-techn. Publ.

9. Voronov E.M., Karpunin A.A. Obespechenie traektornoi bezopasnosti v zadache obleta statichnoi krugovoi zony [Ensuring trajectory safety in the problem of flying around a static circular zone]. Vestnik RUDN. Ser.: Inzhenernye issledovaniya [RUDN Journal of Engineering Researches], 2012, No. 1, pp. 58−70.

10. Emel'yantsev G.I., Stepanov A.P. Integrirovannye inertsial'no-sputnikovye sistemy orientatsii i navigatsii [Integrated inertial-satellite systems of orientation and navigation]. St. Petersburg: Kontsern “TsNII “Elektropribor” Publ., 2016, 394 p.

11. Seidzh E.P., Uait Ch.S. Optimal'noe upravlenie sistemami [Optimum control of systems]. Moscow: Radio i svyaz' Publ., 1982, 392 p.

12. Perov A.I., Kharisov V.N. (eds.). GLONASS. Printsipy postroeniya i funktsionirovaniya [Principles of construction and operation]. Moscow: Radiotekhnika Publ., 2010, 800 p.

13. Yarlykov M.S. et al. Radioelektronnye kompleksy navigatsii, pritselivaniya i upravleniya vooruzheniem letatel'nykh apparatov. Vol.1. Teoreticheskie osnovy [Radio-electronic complexes for navigation, sighting and control of aircraft weapons]. Moscow: Radiotekhnika Publ, 2012, 504 p.

14. Maryukhnenko V.S. et al. Otsenka effektivnosti tipovoi kompleksnoi sistemy navigatsii [Evaluation of the efficiency of a typical integrated navigation system]. Polet [], 2012. No. 2, pp. 25–35.

15. Maryukhnenko V.S. Sistemnyi analiz navigatsionnogo obespecheniya podvizhnykh transportnykh ob"ektov [System analysis of navigation support for mobile transport facilities]. Irkutsk: Irkutsk State Technical University Publ., 2008, 80 p.

16. Maryukhnenko V.S. Otsenka vliyaniya geometricheskogo faktora na tochnost' i informativnost' pozitsionirovaniya ob"ekta v sputnikovoi radionavigatsionnoi sisteme [Evaluation of the influence of the geometric factor on the accuracy and informative positioning of the object in the satellite radio navigation system]. Uspekhi sovremennoi radioelektroniki [Achievements of Modern Radioelectronics], 2008, No. 2, pp. 30–40.

17. Capua R., Bottaro A., Implementation of the Unscented Kalman Filter and a Simple Augmentation System for GNSS SDR Receivers, Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012). Nashville. TN. 2012, September, pp. 2398−2407.