THE MODELLING OF NONSINUSOIDAL MODES IN THE RAILROAD POWER SUPPLY SYSTEMS WHEN DRIVING LOCOMOTIVES WITH INDUCTION TRACTION MOTORS

Receipt date: 
20.09.2018
Bibliographic description of the article: 

Kryukov A. V., Cherepanov A. V., Shafikov A. R. Modelirovanie nesinusoidal'nykh rezhimov v sistemakh elektrosnabzheniya zheleznykh dorog pri dvizhenii lokomotivov s asinkhronnymi tyagovymi dvigatelyami [The modelling of nonsinusoidal modes in the railroad power supply systems when driving locomotives with induction traction motors]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2018, Vol. 60, No. 4, pp. 99–108.  DOI: 10.26731/1813-9108.2018.4(60).99-108

Section: 
Year: 
2018
Journal number: 
УДК: 
621.311, 621.331
DOI: 

10.26731/1813-9108.2018.4(60).99-108

Article File: 
Pages: 
99
108
Abstract: 

Rectifier electric locomotives have nonlinear current voltage characteristics and generate the upper harmonics (UH) in power lines, which is accompanied by the following negative effects: equipment life decrease, electricity metering distortion, emergence of resonant processes etc. Therefore, the problem of decrease in levels of harmonic distortions in the networks adjoining traction substations of the alternating-current railroads has the increased relevance.

The UH generation level depends on the design features of electric locomotives. The electric rolling stock with zonal and phase regulation creates larger harmonic distortions; at the same time power losses in the traction network increase, and power indicators of substations and the system of external power supply worsen. The electric locomotives of new generation, equipped with induction motors (IM) and converters with pulse management, allow forming almost sinusoidal curve of current, reducing loading of networks jet energy and reducing harmonic distortions.

To quantify the extent of decrease of harmonic distortions during the movement of locomotives with IM, the simulation modelling of the nonsinusoidal modes of the standard 25 kV traction power supply system was carried out for two options of the used locomotives: VL-80R with zonal and phase regulation; UTY-1 with induction motors and four-quadrant converters.

The technology of model operation of electrical power systems in phase coordinates with use of trellised equivalent circuits from the RLC elements with the full-connected topology is the basis for a technique of defining the modes by the upper harmonics. Trellised schemes are frequency-dependent and are rather just recalculated for frequencies of the upper harmonics. The dependencies of parameters of nonlinear sources on the current mode have no significant effect on calculation. This is due to the fact that the first harmonica is dominating and the parameters of sources are determined on the basis of the mode predesign at the base frequency. The offered approach is versatile and can be used for a research of the nonsinusoidal modes in the specific and advanced systems of traction power supply.

Results of the modelling showed that the problem of the increased level of harmonic distortions in the networks feeding traction substations can be completely solved when replacing of the existing locomotives by electric locomotives of new generation with asynchronous electric drives and four-quadrant converters.

List of references: 

1.   Markvardt K. G. Elektrosnabzhenie elektrifitsirovannykh zheleznykh dorog [Power supply of electrified railways]. Moscow: Transport Publ., 1982, 528 p.

2.   Timofeev D.V. Rezhimy v elektrich-eskikh sistemakh s tyagovymi nagruzkami [Modes in electrical systems with traction loads]. Moscow –Leningrad: Energiya Publ., 1965, 224 p.

3.   Steimel A. Electric traction motive power and energy supply. Basics and practical experience. Munchen: Oldenbourg Industrieverlag, 2008, 334 p.

4.   Biesenack H., Braun E., George G., etc. Energieversorgung elektrischer bannen. Wiesbaden: B.G. Teubner Verlag, 2006, 732 p.

5.   Arriilaga J., Bradley D.A., Bodger P.S., Power System Harmonics. John Wiley & Sons, New York, 1985. (Russ. ed.: Arrilaga D., Bredli D., Bodzher P. Garmoniki v elektricheskikh sistemakh. Moscow: Energoatomizdat Publ., 1990, 320 p.)

6.   Dolinger S.Yu. et al.  Otsenka dopolnitel'nykh poter' moshchnosti ot snizheniya kachestva elektricheskoi energii v elementakh sistem elektrosnabzheniya [Estimation of additional power losses from the reduction of the quality of electric energy in the elements of power supply systems]. Omskii nauchniy vestnik [The Journal Omsk Scientific Bulletin], 2013, No. 2(120), pp. 178–183.

7.   Zhezhelenko I.V., Saenko Yu.L., Gorpinich A.V. Vliyanie kachestva elektroenergii na sokrashchenie sroka sluzhby i snizhenie nadezhnosti elektrooborudovaniya [The impact of power quality on reducing service life and reducing the reliability of electrical equipment]. Elektrika [Electrical engineering], 2008, No. 3, pp. 14–20.

8.   Zhezhelenko I.V. Vysshie garmoniki v sistemakh elektrosnabzheniya prompredpriyatii [Higher harmonics in power supply systems of industrial enterprises]. Moscow: Energoatomizdat Publ., 2000, 331 p.

9.   Kargin S.V., Krasnova A.N., Bekbulatov R.R. Upravlenie kachestvom elektroenergii v raspredelitel'nykh setyakh obshchego naznacheniya [Energy quality management in general purpose distribution networks]. Moscow: NTF «Energoprogress» Publ., 2012, 108 p.

10. Kartashov I.I., Zuev E.N. Kachestvo elektroenergii v sistemakh elektrosnabzheniya. Sposoby ego kontrolya i obespecheniya [Power quality in power supply systems. Ways to control and ensure it]. Moscow: Moscow Power Institute Publ., 2000, 120 p.

11. Kartashov I.I. et al. Upravlenie kachestvom elektroenergii [Electricity Quality Management]. Moscow: Moscow Power Institute Publ., 2006, 320 p.

12. Tret'yakov E.A. Upravlenie kachestvom elektricheskoi energii v raspredelitel'nykh setyakh zheleznykh dorog [Quality management of electrical energy in the distribution networks of railways]. Omsk: OmGUPS Publ., 2013, 195 p.

13. Shidlovskii A.K., Kuznetsov V.G. Povyshenie kachestva energii v elektricheskikh setyakh [Improving the quality of energy in electrical networks]. Kiev: Naukova dumka Publ., 1985, 268 p.

14. Shidlovskii A.K., Novskii V.A., Kaplychnyi N.N. Stabilizatsiya parametrov elektricheskoi energii v raspredelitel'nykh setyakh [Stabilization of electrical energy parameters in distribution networks]. Kiev: Naukova dumka Publ., 1989, 312 p.

15. Dolgov A.P., Kandakov S.A., Zakaryukin V.P. Uluchshenie kachestva elektroenergii v sistemakh vneshnego elektrosnabzheniya zheleznykh dorog Vostochnoi Sibiri [Improving the quality of electricity in the systems of external power supply of the railways of Eastern Siberia]. Elektrifikatsiya i razvitie infrastruktury energoobespecheniya tyagi poezdov na zheleznodorozhnom transporte [Electrification and development of the infrastructure for power supply of train traction in rail transport]. St. Petersburg, 2011, pp. 37–38.

16. Sudnova V.V. Kachestvo elektroenergii [Power quality]. Moscow: Energoservis Publ., 2000, 80 p.

17. Burkov A.T., Mirsaitov M.M. Rezhimy elektrotyagovoi seti pri ekspluatatsii elektrovozov VL-80R i UTY-1 [Modes of electric traction network in the operation of electric locomotives VL-80R and UTY-1]. Sovremennye tekhnologii – transportu [Modern technologies for transport], No. 2. 2016, pp. 146–160.

18. Zakaryukin V.P., Kryukov A.V., Cherepanov A.V. Intellektual'nye tekhnologii upravleniya kachestvom elektroenergii [Intelligent power quality control technology]. Irkutsk: INRTU Publ., 2015, 218 p.

19. Zakaryukin V.P., Kryukov A.V. Metody sovmestnogo modelirovaniya sistem tyagovogo i vneshnego elektrosnabzheniya zheleznykh dorog peremennogo toka [Methods for joint modeling of traction and external power supply systems for AC railways]. Irkutsk: Irkutsk State Transport Un-ty Publ., 2011, 160 p.

20. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh system [Complex non-symmetrical modes of electrical systems]. Irkutsk: Irkutsk Un-ty Publ., 2005, 273 p.