PECULIARITIES OF DYNAMIC PROPERTIES OF A DYAD IN APPROACHES FROM THE PERSPECTIVES OF MEZOMECHANICS

Receipt date: 
22.03.2019
Bibliographic description of the article: 

Eliseev A. V., Eliseev S. V., Sizykh V. N. Osobennosti dinamicheskikh svoistv diady v podkhodakh s pozitsii mezomekhaniki [Peculiarities of dynamic properties of a dyad in approaches from the perspectives of mezomechanics]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 62, No. 2, pp. 23–33. DOI: 10.26731/1813-9108.2019.2(62).23–33

Year: 
2019
Journal number: 
УДК: 
62.752, 621.534.833; 888.6
DOI: 

10.26731/1813-9108.2019.2(62).23–33

Article File: 
Pages: 
23
33
Abstract: 

The article considers the main abstract theorems of the scientific approach that makes it possible to evaluate the dynamic properties of mechanical oscillatory systems, which include special structural formations. These types of formations from typical elements are called dyads and are used in mathematical modeling of objects, whose computational schemes are displayed by structures, including vibrational ones, which provides for identifying new dynamic properties and effects. The authors develop methodological viewpoints, which create the possibility of description and formation of the dynamic properties of dyads as the structure-forming fundamental elements of mechanical oscillatory systems. The purpose of the work is to elaborate a method of developing mathematical models to estimate dynamic states formed by the initial conditions of the motion specification, provided that the characteristic points of the distribution of oscillation amplitudes exist in the form of “oscillation nodes” in the mode of shockless oscillations of mass-inertial elements of the system. With this aim in view, methods of structural mathematical modeling are used. The paper shows the possibilities of creating modes that exclude the effects of the contact of elements under certain initial conditions for the excitation of free oscillations. Analytical relationships have been obtained that determine the implementability of the proposed modes. The article provides the results of computational modeling; a conclusion has been drawn up on possible directions for the development of a spectrum of dynamic properties. The authors show the implementability of dynamic states, in which mass-inertial elements of the dyad in their movements ensure manifestations of characteristic conditionally fixed points.  They propose the possibilities of changing the dynamic properties of the dyad by introducing additional constraints implemented by mass-inertial elements of various types, including motion translation devices.

List of references: 

1.   Fortov V.E., Makhutov N.A. Mashinostroenie Rossii: Sostoyanie i razvitie [Mechanical Engineering of Russia: State and Development]. Moscow: OEMMPU RAN Publ., 2010. 72 p.

2.   Lapidus B. M. Strategicheskie trendy razvitiya zheleznodorozhnogo transporta [Strategic trends in the development of railway transport]. Byul. Ob"edin. uchen. soveta OAO «RZhD» [Bulletin of the Joint Academic Council of JSC Russian Railways], 2015. No. 6. Pp. 2–9.

3.   Rocard Y. Dynamique generale des vibrations. Paris : Masson, 1949. 179 p.

4.   de Silva C. Vibration. Fundamentals and Practice. Boca Raton, London, New York, Washington, D.C.: CRC Press, 2000. 957 p.

5.   Karnovsky, I.A., Lebed  E. Theory of Vibration Protection. Springer International Publishing, Switzerland, 2016. 708 p.

6.   Banakh L., Kempner M. Vibrations of Mechanical Systems with Regular Structure. Berlin: Heidelberg: Springer, 2010. 262 p.

7.   Ganiev R.F. Kononenko V.O. Kolebaniya tverdykh tel [Oscillations of solid bodies]. Moscow: Nauka Publ., 1976. 432 p.

8.   Tarasik V. P. Matematicheskoe modelirovanie tekhnicheskikh sistem : uchebnik dlya tekhn. spets. vuzov [Mathematical modeling of technical systems: a textbook for engineering university students]. Minsk : Dizain PRO Publ., 2004. 640 p.

9.   Vaisberg L.A. Proektirovanie i raschet vibratsionnykh grokhotov [Design and calculation of vibrating screens]. Moscow: Nedra Publ., 1986. 144 p.

10. Eliseev A.V. Diady v mekhanicheskikh sistemakh: osobennosti dinamicheskikh svoistv [Dyads in mechanical systems: features of dynamic properties]. Part I. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2017. Vol. 21. No. 7 (126). Pp. 26–38.

11. Eliseev A.V. Diady v mekhanicheskikh sistemakh: osobennosti dinamicheskikh svoistv [Dyads in mechanical systems: features of dynamic properties]. Part II. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2017. Vol. 21. No. 8. Pp. 22–37.

12. Eliseev S.V., Artyunin A.I. Prikladnaya teoriya kolebanii v zadachakh dinamiki lineinykh mekhanicheskikh system [Applied theory of oscillations in problems of the dynamics of linear mechanical systems]. Novosibirsk: Nauka Publ., 2016. 459 p.

13. Eliseev S.V. Prikladnoi sistemnyi analiz i strukturnoe matematicheskoe modelirovanie (dinamika transportnykh i tekhnologicheskikh mashin: svyaznost' dvizhenii, vibratsionnye vzaimodeistviya, rychazhnye svyazi): monografiya [Applied system analysis and structural mathematical modeling (dynamics of transport and technological machines: connectivity of movements, vibration interactions, lever linkages): a monograph]. Irkutsk:  IrGUPS Publ., 2018. 692 p.

14. Eliseev S.V., Kargapol'tsev S.K. Otobrazhenie osobennostei soedineniya mekhanicheskikh elementov v teorii mekhanicheskikh tsepei [Presentation of specific aspects of the connection of mechanical elements in the theory of mechanical chains]. Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii : tr. XIX Baikal. Vseros. Konf [Information and mathematical technologies in science and management: Proc. of XIX Baikal All-Russian conf.]. Irkutsk, 2014. Pp. 100–108.

15. Eliseev S.V., Kargapol'tsev S.K., Kashuba V.B. Strukturnye preobrazovaniya – otobrazhenie dinamicheskikh vzaimodeistvii v kolebatel'nykh protsessakh [Structural transformations are the display of dynamic interactions in oscillatory processes]. Vestnik SamGUPS, 2016. No. 4 (34). Pp. 11–21.

16. Eliseev S.V., Orlenko A.I., Nguen D.Kh. Ustroistva dlya preobrazovaniya dvizheniya v strukture diady mekhanicheskoi kolebatel'noi sistemy [Motion translation devices in the structure of the dyad of a mechanical oscillatory system]. Vestn. Donsk. gos. tekhn. un-ta [Vestnik of DSTU], 2017. Vol. 17. No. 3 (90). Pp. 46–59.

17. Eliseev S.V., Orlenko A.I., Eliseev A.V. Strukturnye obrazovaniya v mekhanicheskikh kolebatel'nykh sistemakh: diady, ikh svoistva, vozmozhnosti izmeneniya dinamicheskikh sostoyanii [Structural formations in mechanical oscillatory systems: dyads, their properties, changeabilities of dynamic states]. Transport Urala [Transport of the Urals], 2017. No. 3 (54). Pp. 56–63.

18. Eliseev S.V., Reznik Yu.N., Khomenko A.P. et al. Dinamicheskii sintez v obobshchennykh zadachakh vibrozashchity i vibroizolyatsii tekhnicheskikh ob"ektov [Dynamic synthesis in generalized problems of vibration protection and vibration isolation of technical facilities]. Irkutsk: IGU Publ., 2008. Pp. 523.