AN THE POSSIBILITY OF USING SINGLE-FREQUENCY GPS/GLONASS RECEIVERS DURING SHUNTING OPERATIONS AT THE STATION

Receipt date: 
30.10.2018
Bibliographic description of the article: 

Badmaev A. B., Kozienko L. V., Klimov N. N. Sravnitel'nyi analiz pogreshnostei opredeleniya koordinat odnochastotnymi GPS/GLONASS priemnikami v staticheskom rezhime [On the possibility of using single-frequency GPS/GLONASS receivers during shunting operations at the station]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 62, No. 2. Pp. 212–220. DOI: 10.26731/1813-9108.2019.2(62).212–220

Section: 
Year: 
2019
Journal number: 
УДК: 
629.056.8
DOI: 

10.26731/1813-9108.2019.2(62).212–220

Article File: 
Pages: 
212
220
Abstract: 

This paper analyzes the coordinate variations obtained by the single-frequency GPS/GLONASS and GPS navigation receivers in the static mode. Positioning errors of navigation receivers, as well as characteristic variations in the coordinates of equipment of different manufacturers, are compared. Various calculation methods were used when processing satellite data. Correlation analysis, statistical analysis, a method of graphic images using the MATLAB software package were conducted. To study the features of the functioning of single-frequency GPS / GLONASS navigation receivers, the authors developed a special hardware-software complex (polygon) based on the IrGUPS, operating around the clock. Navigation information from satellites is simultaneously received by three single-frequency GPS and GLONASS receivers (two identical two-system GPS / GLONASS receivers and one GPS receiver). Based on the results of continuous observations, the analysis of variations in latitude, longitude and height of receivers for periods of 1 and 7 days was carried out. The difference in the character of the variations in the coordinates of receivers of various types is noted. It is shown that the distribution of values of the variations in coordinates obeys the normal or Gaussian law. The errors obtained generally correspond to the declared positioning accuracy of single-frequency equipment. The accuracy of determining the coordinates of a single-frequency GPS receiver turned out to be lower in comparison with two-system single-frequency GPS / GLONASS receivers (2DRMS 2.5 m and 3.0 – 3.7 m respectively). The correlation coefficient between the same type of GPS / GLONASS receivers decreases over time from 0.81 / 0.92 (one day) to 0.67 / 0.81 (one week) for latitude / longitude, respectively. The obtained results can be used in the future to improve the accuracy of determining the coordinates during the shunting operations in the railway transport.

List of references: 
  1. Vatansever S., Butun I. A broad overview of GPS fundamentals: Now and future. Computing and Communication Workshop and Conference (CCWC), 2017 IEEE 7th Annual. IEEE, 2017. Pp. 1–6.
  2. Dow J. M., Neilan R. E., Rizos C. The international GNSS service in a changing landscape of global navigation satellite systems. Journal of geodesy, 2009. Vol. 83. No. 3-4. Pp. 191–198.
  3. Gundaev I., Batrakov A. Sistema upravleniya dvizheniem lokomotivov s ispol'zovaniem GLONASS/GPS [The control system of locomotive movement using GLONASS / GPS]. Sovremennye tekhnologii avtomatizatsii [Modern automation technologies], 2012. No. 3. Pp. 40–44.
  4. Zorin V.I. Tekhnologiya kontrolya podvizhnogo sostava na osnove sistemy GLONASS/GPS [Rolling stock control technology based on the GLONASS / GPS system]. Avtomatika, svyaz', informatika [Automation, communication, computer science], 2008. No. 9. Pp. 17–18.
  5. Tsvetkov V.Ya. Primenenie global'nykh navigatsionnykh sputnikovykh sistem dlya upravleniya zheleznodorozhnym transportom [The use of global navigation satellite systems for the management of railway transport]. Nauki o Zemle [Earth Sciences], 2014. No. 3. Pp. 61–68
  6. Groves P. D. Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech house, 2013. 776 p.
  7. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media, 2007. 518 p.
  8. Qureshi M. A. et al. Performance Comparison of Global Navigational Satellite Systems. IJCSNS International Journal of Computer Science and Network Security. 2017. Vol. 17. No. 12. Pp. 99–107.
  9. Eissfeller B. et al. Performance of GPS, GLONASS and Galileo. Photogrammetric Week, 2007. Vol. 7. Pp. 185–199.
  10. Hlubek N. et al. Scintillations of the GPS, GLONASS, and Galileo signals at equatorial latitude. Journal of Space Weather and Space Climate, 2014. Vol. 4. Pp. A22.
  11. Yahya M. H., Kamarudin M. N. Analysis of GPS visibility and satellite-receiver geometry over different latitudinal regions (Kuala Lumpur, 13-15 Oct 2008). International Symposium on Geoinformation (ISG 2008), Kuala Lumpur, Malaysia. 2008.
  12. Poole I. GPS accuracy, errors & precision [Elektronnyi resurs]. Radio-electronics, 2012. Vol. 2. URL: http://www.radio-electronics.com/info/satellite/gps/accuracy-errors-prec... (Access date: 04.11.2018).
  13. Li X., Zhang X., Ren X., Fritsche M., Wickert J., Schuh H., Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS GLONASS Galileo and BeiDou. Sci. Rep. 2015. Vol. 5. Pp. 8328.
  14. Gorbachev O.A. et al. O novoi vozmozhnosti povysheniya tochnosti pozitsionirovaniya v odnochastotnoi apparature sputnikovykh radionavigatsionnykh sistem [On the new possibility of improving the positioning accuracy in single-frequency equipment of satellite radio navigation systems]. Crede Experto: Transport Publ., obshchestvo, obrazovanie, yazyk [Crede Experto: transport, society, education, language], 2017. No. 2. Pp. 150–157.
  15. Gorbachev O.A., Ivanov V.B., Kholmogorov A.A. Differentsial'no-vremennaya korrektsiya oshibok pozitsionirovaniya dlya sputnikovykh radionavigatsionnykh sistem [Differential-temporal positioning error correction for satellite radio navigation systems]. Nauchnyi vestnik MGTU GA [Scientific Bulletin of Moscow State Technical University of Civil Aviation], 2014. No. 207. Pp. 17–22.
  16. Gapanovich V.A. Sputnikovye tekhnologii v innovatsionnoi strategii OAO «RZhD» [Satellite technologies in the innovation strategy of Russian Railways]. Avtomatika, svyaz', informatika [Automation, communication and Informatics], 2008. No. 9. Pp. 2–4.
  17. Kozienko L.V. et al. Analiz variatsii koordinat prostranstvenno-raznesennykh odnochastotnykh GPS/GLONASS priemnikov [Analysis of the variations of coordinates of spatially separated single-frequency GPS / GLONASS receivers]. Transportnaya infrastruktura Sibirskogo regiona : materialy pyatoi mezhdunar. nauch.-prakt. konf. [Transport Infrastructure of the Siberian Region: Materials of the Fifth International scientific and practical conf.]. Irkutsk, 2014. Vol. 1. Pp. 341–346.
  18. Gorbachev O.A. et al. Vremennye variatsii oshibok pozitsionirovaniya v sputnikovoi navigatsionnoi sisteme GPS [Temporary variations of positioning errors in the GPS satellite navigation system]. Nauchnyi vestnik MGTU GA [Scientific Bulletin of Moscow State Technical University of Civil Aviation], 2013. No. 12 (198). Pp. 23–30.
  19. Dogan U., Uludag M., Demir D. O. Investigation of GPS positioning accuracy during the seasonal variation. Measurement, 2014. Vol. 53. Pp. 91–100.