SIMULATION OF NON-SINUSOIDAL MODES OF TRACTION POWER SUPPLY SYSTEMS, EQUIPPED WITH REACTIVE POWER COMPENSATION UNITS

Receipt date: 
25.02.2018
Bibliographic description of the article: 

Zakaryukin V.P., Kryukov A.V., Kutsyi A.P. Simulation of non-sinusoidal modes of traction power supply systems, equipped with reactive power compensation units. Modern technologies. System analysis. Modeling, 2018, Vol. 57, No. 1, pp. 72-79. DOI: 10.26731 / 1813-9108.2018.1 (57). 72-79

Section: 
Year: 
2018
Journal number: 
УДК: 
621.311: 621.321
DOI: 

10.26731/1813-9108.2018.1(57).72-79

Article File: 
Pages: 
72
79
Abstract: 

Rectifying electric locomotives create significant harmonic distortions in tractive electric power supply systems. Because of existence of the higher harmonics, capacitor banks, which are a basic element of reactive power sources applied in power supply systems, can be overloaded. In case of harmonic increased levels such overloads can lead to the total failure of reactive power sources. Therefore, the problem of possible overload prediction has the practical significance. It becomes especially important when planning the passage of trains of increased weight.

The article describes the technique of computer simulation which makes it possible to define the capacitor batteries overload in the presence of higher harmonics currents. It is shown that the problem of overload prediction can be solved by the non-sinusoidal mode simulation for the planned amount of train traffic using the methods and means developed at Irkutsk State Transport University. The simulation was carried out by the software package Fazonord for the standard tractive power supply system including three intersubstation zones of 27.5 kV tractive network of the two-track section. The results showed that overloads of capacitor banks can be lowered to acceptable values by means of the protective reactor. When the reactor is shut down, overload coefficients become unacceptably large.

The offered technique of computer simulation gives the chance to define capacitor batteries’ overloads in the presence of non-sinusoidal curve currents and voltages.Practical application of the technique will allow avoiding emergency situations which can lead to failure of the expensive equipment.

List of references: 

1.   Borodulin B.M., German L.A., Nikolaev G.A. Kondensatornye ustanovki elektrifitsirovannykh zheleznykh dorog [Condenser installations of electrified railways]. Moscow : Transport Publ., 1983, 183 p.

2.   German L.A., German V.L. Avtomatizatsiya elektrosnabzheniya tyagovoi seti peremennogo toka [Automation of power supply of an AC traction network]. Moscow : Mosc. State Transport Un-ty, 2014, 173 p.

3.   German L.A., Serebryakov A.S. Reguliruemye ustanovki emkostnoi kompensatsii v sistemakh tyagovogo elektrosnabzheniya zheleznykh dorog [Adjustable installations of capacitive compensation in traction power systems of railways]. Moscow : Training and methodological center for education in railway transport, 2013, 315 p.

4.   German L. A., Serebryakov A. S., Dulepov D. E. Fil'trokompensiruyushchie ustanovki v sistemakh tyagovogo elektrosnabzheniya zheleznykh dorog [Compensation filter installations in traction power systems of railways]. Knyaginino : NGIEU Publ., 2017, 402 p.

5.   Markvardt K. G. Elektrosnabzhenie elektrifitsirovannykh zheleznykh dorog [Electricity supply of electrified railways]. Moscow : Transport Publ., 1982, 528 p.

6.   Zakaryukin V.P., Kryukov A.V., Cherepanov A.V. Upravlenie kachestvom elektroenergii v sistemakh elektrosnabzheniya zheleznykh dorog [Electricity quality management in power supply systems of railways]. Irkutsk : ISTU Publ., 2015, 180 p.

7.   Zakaryukin V.P., Kryukov A.V. Intelligent Traction Power Supply System. The power grid of the future. Proceeding, No. 2. Magdeburg : Otto-von-Guericke University Magdeburg, 2013, pp. 44–48.

8.   Steimel A. Electric traction motive power and energy supply. Basics and practical experience. Munchen: Oldenbourg Industrieverlag, 2008, 334 p.

9.   Biesenack H., Braun E., George G., et al. Energieversorgung elektrischer bannen. Wiesbaden : B.G. Teubner Verlag, 2006, 732 p.

10. Skam'in A.N. Povyshenie effektivnosti funktsionirovaniya kondensatornykh batarei v elektricheskoi seti gornogo pred-priyatiya [Increase of efficiency of functioning of capacitor batteries in electric network of mining enterprise]. Zapiski Gornogo instituta [Journal of Mining Institute], 2011, Vol. 189, pp. 107–110.

11. Pekhterev F. S. Perspektivnye poligony obrashcheniya tyazhelovesnykh poezdov [Perspective polygons of heavy-train handling]. Zheleznodorozhnyi transport [Railway Transport], 2014, No. 9, pp. 7–10.

12. Kurbasov A. S. Tyazhelovesnoe dvizhenie gruzovykh poezdov na rossiiskikh zheleznykh dorogakh: za i protiv [Heavy traffic of freight trains on the Russian railways: pros and cons]. Nauka i transport [Railway transport], 2012, No. 3, pp. 15–17.

13. Zakaryukin V.P., Kryukov A.V., Cherepanov A.V. Modelirovanie rezhimov sistem tyagovogo elektrosnabzheniya pri dvizhenii tyazhelovesnykh poezdov [Modeling of modes of traction power supply systems during the movement of heavy trains]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2016, Vol.20, No. 11, pp. 133–142.

14. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh system [Complexly asymmetric modes of electrical systems]. Irkutsk : Irkut. state un-ty Publ., 2005, 273 p.

15. Kryukov A.V., Zakaryukin V.P. Metody sovmestnogo modelirovaniya sistem tyagovogo i vneshnego elektrosnabzheniya zheleznykh dorog peremennogo toka [Methods of joint modeling of traction and external power supply systems for AC railways]. Irkutsk : ISTU Publ., 2011, 170 p.