A SYSTEMATIC APPROACH FOR DEVELOPING METHODS OF EARTHQUAKE PREDICTION

Receipt date: 
18.01.2017
Year: 
2017
Journal number: 
УДК: 
550.348.64(571/55)
Article File: 
Pages: 
95
103
Abstract: 

Attempts of earthquake prediction based on monitoring changes in the concentration of helium in groundwater showed that due to the influence of random factors on the concentration of helium, the probability of false alarm is significantly higher than the probability of correct prediction of the earthquake. Therefore, reliable methods of short and middle term prediction of earthquakes has not been found so far. Primarily this is because to date there has not been an adequate model created for explaining the relationship between the concentration of helium in groundwater with the impending earthquake. Existing mathematical models of helium excrete, formalized by experiment, describe well the essence of the processes, but poorly suite for earthquake prediction in practice. The paper considers practical application of the system approach to the solution of problems of an estimation of quantitative influence of the process of preparation and implementation of the earthquake on the concentration of helium in groundwater. The proposed energy model for the preparation and implementation of earthquake source explain the appearance of harbingers of earthquakes of different physical nature. The problem of assessing the quantitative influence of the process of preparation and implementation of the earthquake on the helium concentration in groundwater is solved and a method of the medium-term forecast the time of occurrence of the earthquake is proposed. The results of study of variations of the concentrations of dissolved helium in ground waters of South Baikal area caused by seismic processes, and practical results on the medium-term forecast of close and remote from Irkutsk seismic processes are given.

List of references: 
  1. Барсуков В.Л., Беляев А.А., Серебренников В.С. Вестники беды (о поиске средств геохимического прогноза землетрясений). М. : Наука. 1989. 136 с.
  2. Оптнер С. Системный анализ для решения деловых и промышленных проблем. М. : Советское радио, 1969. 216 с.
  3. Логачев Н.А., Борняков С.А., Шерман С.И. О механизме формирования Байкальской рифтовой зоны по результатам физического моделирования // ДАН. 2000. Т. 373. № 3. С. 388–390.
  4. Гелий [Электронный ресурс] // Наука и Техника. Популярная библиотека химических элементов. М. : Наука, 2002. URL: http://www.astronet.ru/db/msg/1177210/pb002.htm. (дата обращения 22.04.2017).
  5. Соболев Г.А. Основы прогноза землетрясений. М. : Наука, 1993. 313 с.
  6. Горная энциклопедия [Электронный ресурс]. URL: http://www.mining-enc.ru/p/prochnost. (дата обращения 22.04.2017).
  7. Аркуша А.И. Техническая механика. Теоретическая механика и сопротивление материалов. М. : Высшая школа, 2008. 263 с.
  8. Заславский Б.В. Краткий курс сопротивления материалов. М. : Машиностроение, 1986. 328 с.
  9. Фридман Я.Б. Механические свойства металлов. М. : Оборонгиз, 1952. 555 с.
  10. Scholz C. H., Sykes L. R., Aggarwal Y. P. Earthquake prediction: a physical basis. // Science. 1973. Vol. 181. Pp. 803–810.
  11. Чхаидзе Н. Методы подобия и математического моделирования в исследовании сложных систем. Тбилиси : Технический университет, 2009. 99 с.
  12. Патент № 2601403 Рос. Федерация. Способ гидрогеохимического определения времени возникновения землетрясений в Южном Прибайкалье / Р.М. Семенов, В.В. Кашковский, М.Н. Лопатин. № 2015110671 ; опубл. 10.11.2016. Бюл. № 31.