HEAT EXCHANGER TESTING RESULTS UNDER DIFFERENT OPERATION MODES

Авторы: 
Дата поступления: 
20.06.2017
Год: 
2017
Номер журнала (Том): 
УДК: 
622.23.05+67.05
DOI: 

10.26731/1813-9108.2017.3(55).68-75

Файл статьи: 
Страницы: 
68
75
Аннотация: 

To obtain an appropriate picture of emissions through the aeration lantern of the block based on the location of the experimental area, a flexible shut-off screen was applied together with electrolyzers RA-400. Sampling was carried out along the horizon of the upper edge of the electrolyzer with the fully covered tub and during the exposing by means of the quick-detachable/installed attachments. The study of aerodynamics and the sampling of extended sources – the aeration lantern, input ventilation and the area above the depressurized electrolyzer – was carried out under moderate weather conditions (no strong winds) and close to mean standard atmospheric pressure and humidity. According to the results of instrumental studies through the use of formulas for the calculation of aerodynamic parameters, the following characteristics of dust-gas-air flows organized by the gas suction and gas-cleaning systems were calculated: the density of gas medium at operating conditions; the dust-gas-air flow motion speed at the site of measurement; the volume of gas under operating conditions; the volume of gas under normal conditions. With the electrolyzer covered, at the point closest to the gas removal system, the concentration of hydrogen peroxide in the sample was the lowest. Further, with increasing distance from the gas removal system, the concentration increased slightly, but at both points was below the MAC (maximum allowable concentration). The concentration of hydrogen peroxide (expressed as fluorine) in the of gas removal system was defined. In the mode of replacement of anodes, the volume of gas removal increased. The concentration of hydrofluoride was also below the maximum permissible concentration in the operation area. The concentration increase before the anodes replacement point was negligible, and at the third point after the covers removal was quite noticeable. The concentration of hydrogen peroxide (expressed as fluorine) in the gas removal system is defined.

Финансирование: 

Исследования проведены при поддержке гранта Президента Российской Федерации МК-4752.2016.8.

Список цитируемой литературы: 

1.   Shakhrai S.G., Kondrat'ev V.V., Belyanin A.V. Energo- i resursosberezhenie v proizvodstve alyuminiya [Energy and resource saving in aluminum production]. Irkutsk: Irkutsk State Technical University Publ., 2014, 146 p.

2.   Shelekhov I.Yu. et al. Issledovaniya parametrov termoelektricheskikh generatorov izgotovlennykh po tolstoplenochnoi tekhnologii [Investigations of the parameters of thermoelectric generators manufactured by thick-film technology]. Metallurgiya: tekhnologii, innovatsii, kachestvo [Metallurgy: technologies, innovations, quality]. Novokuznetsk, 2015, pp. 373–377.

3.   Kondrat'ev V.V., Rzhechitskii E.P. Puti resheniya problemy otlozhenii v apparatakh glinozemnogo proizvodstva [Ways to solve the problem of deposits in the apparatuses of alumina production]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2011, No. 5 (52), pp. 120–125.

4.   Shakhrai S.G. et al. Okhlazhdenie anodnykh gazov alyuminievykh elektrolizerov v teploobmennikakh nagreva glinozema [Cooling of anode gases of aluminum electrolysers in heat exchangers of alumina heating]. Metallurg [Metallurgist], 2015, No. 2, pp. 29–32.

5.   Doshlov O.I., Kondrat'ev V.V., Ugap'ev A.A. Primenenie tyazheloi smoly piroliza v kachestve komponenta svyazuyushchego dlya proizvodstva anodnoi massy [The use of a heavy pyrolysis resin as a component of a binder for the production of an anode mass]. Metallurg [Metallurgist], 2015, No. 5, pp. 72–77.

6.   Kondrat'ev V.V. et al. Predvaritel'nyi nagrev obozhzhennogo anoda [Preheating the baked anode]. Tsvetnye metally [Non-ferrous metals], 2015, No. 1 (865), pp. 54–56.

7.   Kondrat'ev V.V. et al. Snizhenie energozatrat v sistemakh gazoudaleniya i gazoochistki alyuminievykh elektrolizerov s obozhzhennymi anodami [Decrease in energy costs in gas removal and gas cleaning systems of aluminum electrolyzers with baked anodes]. Sovremennoe sostoyanie i perspektivy uluchsheniya ekologii i bezopasnosti zhiznedeyatel'nosti Baikal'skogo regiona "Belye nochi-2016" : sb. st. Mezhdunar. nauch.-tekhn. konf. [In the collected book: Current state and prospects for improving the ecology and safety of the life of the Baikal region "White Nights-2016", collection of articles of the International Scientific and Technical Conference]. Irkutsk: INRTU Publ., 2016, pp. 209–218.

8.   Belyanin A.V., Karlina A.I. Nekotorye prikladnye aspekty povysheniya energeticheskoi effektivnosti alyuminievykh elektrolizerov [Some Applied Aspects of Improving the Energy Efficiency of Aluminum Electrolyzers]. Prospekt Svobodnyi-2016 : materialy Mezhdnar. nauch.-prakt. konf. [ Svobodnyi Avenue-2016: Materials of the Internat. Scient. and Pract. Conference]. Krasnoyarsk, 2016, pp. 4–9.

9.   Belyanin A.V. et al. Razrabotka meropriyatii okhlazhdeniya gazokhodnykh setei korpusov elektroliza [Development of measures for cooling the gas-flow networks of electrolysis blocks]. Prospekt Svobodnyi-2016 : materialy Mezhdnar. nauch.-prakt. konf. [ Svobodnyi Avenue-2016: Materials of the Internat. Scient. and Pract. Conference]. Krasnoyarsk, 2016, pp. 10–14.

10. Doshlov O.I. et al. Kompaundirovanie kak perspektivnaya tekhnologiya proizvodstva al'ternativnykh svyazuyushchikh materialov dlya proizvodstva anodnoi massy [Compounding as a promising technology for the production of alternative binding materials for the production of anode mass]. Koks i khimiya [Coke and chemistry], 2015, No. 1, pp. 34–41.

11. Shakhrai S.G. et al. Povyshenie energeticheskoi effektivnosti proizvodstva alyuminiya snizheniem gazonapylennosti elektrolita [Increase in the energy efficiency of aluminum production by reducing the gas-dust content of the electrolyte]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2015, No. 1 (25), pp. 103–107.

12. Kondrat'ev V.V. et al. Povyshenie effektivnosti gazoulavlivaniya v rabochei zone elektrolizerov s predvaritel'no obozhzhennymi anodami s siloi toka svyshe 300 KA [Increase in the efficiency of gas collection in the working zone of electrolyzers with prebaked anodes with a current strength of more than 300 KA]. Ekologiya i promyshlennost' Rossii [Ecology and industry of Russia], 2012, No. 7, pp. 8–11.

13. Kondrat'ev V.V. et al. Formation and utilization of nanostructures based on carbon during primary aluminum. Metallurgist, 2016, Vol. 60, No. 7-8, pp. 877–882.

14. Nikolaev M.D. et al. Issledovanie problemy obrazovaniya otlozhenii v apparatakh glinozemnogo proizvodstva i puti ee resheniya [Investigation of the problem of formation of deposits in the apparatuses of alumina production and ways to solve it]. Transportnaya infrastruktura Sibirskogo regiona : materialy Mezhdnar. nauch.-prakt. konf. [Transport infrastructure of the Siberian region: Materials of the International scientific and research conference], 2015, Vol. 1, pp. 198–208.

15. Kuz'min M.P., Begunov A.I. Priblizhennye raschety termodinamicheskikh kharakteristik intermetallicheskikh soedinenii na osnove alyuminiya [Approximate calculations of the thermodynamic characteristics of intermetallic compounds based on aluminum]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2013, No. 1 (72), pp. 98–102.

16. Kuz'min M.P., Kuz'mina M.Yu. Povyshenie effektivnosti deyatel'nosti Irkutskogo alyuminievogo zavoda za schet uvelicheniya proizvodstva rondelei [Increasing the efficiency of the Irkutsk aluminum plant by increasing the production of slugs]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2013, No. 2 (73), pp. 193–197.

17. Kuz'min M.P. Opredelenie ustoichivosti intermetallidov v tekhnicheskom alyuminii [Determination of the stability of intermetallic compounds in technical aluminum]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2013, No. 8 (79), pp. 138–143.

18. Kuz’min M.P., Begunov A.I. Thermodynamic stability of intermetallic compounds in technical aluminum. Zhurnal SFU. Tekhnika i tekhnologii  [Journal of the Siberian Federal University. Series: Engineering and Technologies], 2014, Vol. 7, No. 2, pp. 132–137.

19. Kuz'min M.P. et al. Innovatsionnoe razvitie metallurgicheskogo kompleksa Irkutskoi oblasti [Innovative development of the metallurgical complex of the Irkutsk region]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2015, No. 5 (100), pp. 236–240.

20. Nikolaev V.N., Kondrat'ev V.V. Tekhnologicheskoe reshenie intensifikatsii protsessov gazoudaleniya i gazoochistki alyuminievogo proizvodstva  [Technological solution to intensify the processes of gas removal and gas purification of aluminum production]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2012, No. 7 (66), pp. 142–147.

21. Shakhrai S.G. et al. Utilizatsiya teploty anodnykh gazov alyuminievogo elektrolizera [Utilization of heat of anode gases of an aluminum electrolyzer]. Tsvetnye metally [Non-ferrous metals], 2016, No. 2 (878), pp. 52–56.

22. Kondrat'ev V.V. et al. Analiz vliyaniya povysheniya sily i plotnosti anodnogo toka na pokazateli raboty elektrolizera Soderberga [Analysis of the effect of increasing the strength and density of the anode current on the performance of Soderberg cell]. Tsvetnye metally - 2011 : sb. nauchn. dokl. III Mezhdunar. Kongressa [Non-Ferrous Metals-2011: a collected book of scientific reports of the III International Congress]. Krasnoyarsk: SFU Publ., 2011, pp. 185-192.

23. Rzhechitskii E.P., Kondrat'ev V.V., Tenigin A.Yu. Tekhnologicheskie resheniya po okhrane okruzhayushchei sredy pri proiz-vodstve alyuminiya [Technological solutions for environmental protection in aluminum production]. Irkutsk: IRKUTSK STATE TECHNICAL UNIVERSITY Publ., 2013, 159 p.

24. Shakhrai S.G., Korostovenko V.V., Rebrik I.I. Sovershenstvovanie sistem kolokol'nogo gazootsosa na moshchnykh elek-trolizerakh Soderberga [Perfection of systems of a bell-type gas-pump on high-power Soderberg electrolyzers]. Krasnoyarsk: IPK SFU Publ, 2010, 145 p.

25. Kondrat'ev V.V. et al. Tekhniko-ekologicheskie i pravovye aspekty proizvodstva alyuminiya [Technical, ecological and legal aspects of aluminum production]. St.-Petersburg: MANEB Publ., 2011, 224 p.

26. Ershov V.A. et al. Vliyanie koeffitsientov fil'tratsii na dostovernost' prognoza izmeneniya napryazheniya alyuminievogo elektrolizera [Influence of the filtration coefficients on the reliability of the forecast of changes in the voltage of an aluminum electrolyzer]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2010, No. 5 (45), pp. 184–187.

27. Evseev N.V. et al. Opredelenie effektivnosti raboty alyuminievykh elektrolizerov pri ispol'zovanii ukrupnennogo glinozema marki G-00K [Determination of the efficiency of aluminum electrolysers using enlarged alumina of grade G-00K]. Tsvetnye metally [Non-ferrous metals], 2006, No. 12, pp. 51–54.

28. Ershov V.A. Avtomaticheskaya podacha glinozema na elektrolizerakh s bokovym tokoprovodom [Automatic feed of alumina on electrolyzers with lateral current conductor]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2014, No. 4 (24), pp. 99–102.

29. Proizvodstvo alyuminiya i splavov na ego osnove : spravochnik metallurga [A reference book of a metallurgist. Production of aluminum and alloys based on it: a reference book]. Irkutsk: INRTU Publ., 2015, 764 p.

30. Kondrat'ev V.V. et al. Nanostruktury i alyuminievaya promyshlennost’ [Nanostructures and aluminum industry]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], No. 8, 2015, pp. 77–85.

31. Shakhrai S.G. et al. Obosnovanie vozmozhnosti nagreva glinozema teplom anodnykh gazov alyuminievogo elektrolizera [Substantiation of the possibility of heating alumina with the heat of anode gases of an aluminum electrolyzer]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2016, No. 3 (110), pp. 131–138.

32. Radionov E.Yu., Ershov V.A. Osobennosti magnitnoi gidrodinamiki elektrolizerov OA-300 5-oi serii Irkutskogo alyuminievogo zavoda [Features of magnetic hydrodynamics of electrolyzers OA-300 of the 5th series of the Irkutsk aluminum plant]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2009, No. 4 (40), pp. 210–213.

33. Kondrat'ev V.V., Nikolaev V.N., Karlina A.I. Modelirovanie i laboratornye ispytaniya vysokoeffektivnogo teploobmennika s nizkim statisticheskim soprotivleniem [Modeling and laboratory tests of a high-efficiency heat exchanger with low statistical resistance].  Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System analysis, Modeling], 2015, No. 2 (46), pp. 80–83.

34. Kondrat'ev V.V. et al. Description of the heat exchanger unit construction, created in IRNITU. International Journal of Applied Engineering Research, 2016, Vol. 11, No. 19, pp. 9979–9983.

35. Sysoev I.A. et al. Razrabotka sposoba upravleniya energeticheskim rezhimom elektrolizerov dlya proizvodstva alyuminiya [Development of a method for controlling the energy regime of electrolyzers for aluminum production]. Tsvetnye metally [Non-ferrous metals], 2016, No. 5 (881), pp. 38–43.