NUMERICAL INVESTIGATION OF THE EQUIPMENT RELIABILITY INDICATORS ACCORDING TO SMALL VOLUME DATA

Дата поступления: 
14.11.2018
Библиографическое описание статьи: 

Krakovskiy Yu. M., Hoang N. A Chislennoye issledovaniye pokazateley nadezhnosti oborudovaniya po dannym malogo ob"yema [Numerical study of equipment reliability indicators according to small volume data] Sovremennyye tekhnologii. Sistemnyy analiz. Modelirovaniye [Modern Technologies. System Analysis. Modeling], 2019, Vol. 61, No. 1, pp. 28–34. DOI: 10.26731/1813-9108.2019.1(61).28–34

Год: 
2019
Номер журнала (Том): 
УДК: 
519.6:311
DOI: 

10.26731/1813-9108.2019.1(61).28–34

Файл статьи: 
Страницы: 
28
34
Аннотация: 

During the operation of any complex technological equipment, various random factors affect it. This, in turn, leads to disruption of the production processes, with this equipment as a participant. Considering the random nature of factors influencing theequipment being operated, the operating time is a random variable and is described by a distribution function or probability distribution density, as well as numerical characteristics: variance, root mean square value, mathematical expectation, etc. With a small amount of statistical data on the operating time of the equipment, which is observed in practice, it is proposed to build an empirical distribution function and, using the results of simulation modeling, to evaluate the reliability indicators for the proposed numerical models. Investigated reliability indicators are: probability of failure-free operation; average resource; gamma percentage resource; the probability of failurefree operation of the residual resource; average residual resource; gamma percent residual life. In this case, it is not required to know the distribution law of the general population. In our case, it was required to know the distribution law only for testing numerical models. Testing of numerical models for evaluating reliability indicators showed their high accuracy when compared with reliability indicators, when the operating time has a Weibull distribution.

Список цитируемой литературы: 

1. Baikhel't F., Franken P. Nadezhnost' i tekhnicheskoe obsluzhivanie. Matematicheskii podkhod. [Reliability and maintenance. Mathematical approach]. Transl. from English. Moscow: Radio i svyaz' Publ., 1988, 392 p. (In Russ.)
2. Krakovskii Yu.M., Kargapol'tsev S.K., Nachigin V.A. Modelirovanie perevozochnogo protsessa zheleznodorozhnym transportom: analiz, prognozirovanie, riski [Modeling of the transportation process by rail: analysis, forecasting, risks]. In prof. Krakovskii Yu.M. (ed.). St. Petersburg: «LITEO» Publ., 2018, 240 p.
3. Ngo Z. D., Krakovskii Yu. M., Zakharova O. A. Chislennye modeli otsenki pokazatelei nadezhnosti mnogokomponentnogo oborudovaniya po rezul'tatam komp'yuternogo modelirovaniya [Numerical models for assessing the reliability of multicomponent equipment based on the results of computer simulation]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2015. No. 4 (48), pp. 66 – 70.
4. Davaadorzh B., Krakovskii Yu.M. Nechetkii chislennyi veroyatnostnyi analiz dlya otsenki pokazatelei nadezhnosti rel'sovykh skreplenii [Fuzzy numerical probabilistic analysis for the evaluation of reliability indicators rail fasteners]. Mir Transporta [World of Transport], 2017. Vol. 15, No.3 (70), pp. 30-39.
5. Artamonov I. V. Programmnyi kompleks analiza nadezhnosti biznes-tranzaktsii [Software package for analyzing the reliability of a business transaction]. Informatsionnye sistemy i tekhnologii [Information systems and technologies], 2014. No. 5 (85), pp. 5 – 13.
6. Burtaev Yu. F., Ostreikovskii V. A. Statisticheskii analiz nadezhnosti ob"ektov po ogranichennoi informatsii [Statistical analysis of the reliability of objects with limited information]. Moscow: Energoatomizdat Publ., 1995, 240 p.
7. Vasilenko N. V., Makarov V. A. Modeli otsenki nadezhnosti programmnogo obespecheniya [Software reliability assessment models]. Vestnik Novgorodskogo gosudarstvennogo universiteta [Bulletin of Novgorod State University], 2004. No. 28, pp. 126 – 132.
8. Dorokhov A. N., Mironov A. N., Kernozhitskii V. A., Shestopalova O. L. Obespechenie nadezhnosti slozhnykh sistem. [Ensuring the reliability of complex systems]. St. Petersburg: Lan' Publ., 2011, 352 p.
9. Ignatushchenko V. V., Milkov M.L., Sidorov A.V. Mnogoversionnoe rezervirovanie vzaimozavisimykh parallel'nykh zadach dlya upravlyayushchikh parallel'nykh vychislitel'nykh sistem: formalizovannoe opisanie, otsenka otkazoustoichivosti [Multi-versioned backup
of interdependent parallel tasks for managing parallel computing systems: formalized description, fault tolerance evaluation]. Nadezhnost' [Dependability], 2009. No. (4) 32, pp. 45 – 62.
10. Krakovskii Yu. M., Nachigin V. A., Nachigin A. V. Otsenka tekhnicheskogo sostoyaniya rel'sov po dannym monitoringa puti [Assessment of the technical condition of rails according to the monitoring of the track]. Vestnik VNIIZhT [Vniizht Bulletin], 2012. No. 5, pp. 40 – 43.
11. Chukanov V. O. Nadezhnost' programmnogo obespecheniya i apparatnykh sredstv sistem peredachi dannykh atomnykh elektrostantsii [Reliability of software and hardware of data transmission systems of nuclear power plants]. Moscow: Dialog – MIFI Publ., 2008, 168 p.
12. Utkin L. V., Utkin V. S. Strukturnaya nadezhnost' sistem pri nepolnoi statisticheskoi informatsii o parametrakh modeli [Structural reliability of systems with incomplete statistical information on model parameters]. Nadezhnost' [Dependability], 2009, No. (3) 31, pp. 28– 36.
13. Kel'ton V., Lou A. Imitatsionnoe modelirovanie [Imitating modeling]. St. Petersburg: Piter Publ., 2004, 847 p.
14. Krakovskii Yu.M., Kalinovskii S.G., Selivanov A.S. Matematicheskoe obespechenie modelirovaniya sluchainoi velichiny pri veroyatnostnom analize bezubytochnosti [Mathematical software for modeling random variables in probabilistic break-even analysis]. Informatsionnye tekhnologii i problemy matematicheskogo modelirovaniya slozhnykh system [Information technologies and problems of mathematical modeling of complex systems], 2009. No. 7, pp. 137-143.
15. Ngo Z. D., Krakovskii Yu. M. Vychislitel'nyi algoritm chislennoi otsenki parametra potoka otkazov mnogokomponentnogo oborudovaniya [Computational algorithm for the numerical estimation of the failure flow parameter of multicomponent equipment]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2015. No. 10, pp. 16 – 20.
16. Ngo Z. D., Krakovskii Yu. M. Imitatsionnaya model' mnogokomponentnogo oborudovaniya dlya opredeleniya zakona raspredeleniya ego narabotki [Simulation model of multicomponent equipment for determining the law of distribution of its operating time]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2015. No. 7, pp. 25 – 32.
17. Ngo Z. D., Krakovskii Yu. M. Chislennye modeli otsenki koeffitsienta operativnoi gotovnosti i parametra potoka vosstanovleniya mnogokomponentnogo oborudovaniya [Numerical models for estimating the coefficient of operational readiness and the parameter of the restoration flow of multicomponent equipment]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2016. No. 1 (49), pp. 55 – 59.
18. Krakovskii Yu. M. Matematicheskie i programmnye sredstva otsenki tekhnicheskogo sostoyaniya oborudovaniya [Mathematical and software tools for assessing the technical condition of equipment]. Novosibirsk: Nauka Publ., 2006, 228 p.