APPLICATION OF A PERMUTATION DECODING METHOD IN A SMALL-CLASS UNMANNED AERIAL VEHICLE CONTROL SYSTEM (DRONES, MULTICOPTERS)

Дата поступления: 
15.03.2019
Библиографическое описание статьи: 

Sorokin I. A., Obukhov A. D., Romanov P. N., Shibaeva M. Yu. Primenenie metoda perestanovochnogo dekodirovaniya v sisteme upravleniya BPLA malogo klassa (drony, mul'tikoptery) [Application of a permutation decoding method in a small-class unmanned aerial vehicle control system (drones, multicopters)]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 62, No. 2. Pp. 186–195. DOI: 10.26731/1813-9108.2019.2(62).186–195

Рубрика: 
Год: 
2019
Номер журнала (Том): 
УДК: 
004.031.4
DOI: 

10.26731/1813-9108.2019.2(62).186–195

Файл статьи: 
Страницы: 
186
195
Аннотация: 

This paper analyzes the theory of control of unmanned aerial vehicles. Permutation decoding tools have been found to allow masking of the actual signal structure for a short period of time. Cyber espionage and data leakage are common practices, and this can immediately influence the security of these complex machines. Cyber-attacks, network vulnerability, malware attacks to steal data from special projects, as well as unmanned aircraft technology are among the most desirable targets. This article will examine the ability of an attacker transmitting falsified GPS signals that affect the behavior of an autonomous UAV. The requirements for an open and hidden capture of the UAV navigation system were presented along with the results of live tests of fake attacks against several commercial GPS receivers. When analyzing the related dynamics of the UAV and spoofing, it was shown that the GPS spoofing attack can force the UAV to unconsciously follow the trajectory imposed by the trigger mechanism. The strict upper limit of the UAV reference acceleration trajectory was shown to lead to the construction of the Spoofer example of stealth testing based on innovation. Finally, field testing showed that a destructive GPS spoofing attack on a rotary-wing UAV is both technically and efficiently feasible. The demonstration is a proof of the concept of a simple special case in a wide class of GPS spoofing attacks on mobile targets.

Список цитируемой литературы: 
  1. Kondryakova M.A. Uyazvimost' kanalov svyazi BPLA [Vulnerability of UAV communication channels]. Alleya nauki [Alley of science], 2018. Vol. 5. No. 4 (20). Pp. 860–863.
  2. Egorov Yu. P. et al. Dekoder s povyshennoi korrektiruyushchei sposobnost'yu [A decoder with enhanced corrective ability]. Pat. RF 2438252 No. 2010118639/08 ; appl. 07.05.2010 ; publ. 27.12.2011, Bull. No. 36.
  3. Gladkikh A.A. Osnovy teorii myagkogo dekodirovaniya izbytochnykh kodov v stirayushchem kanale svyazi [Fundamentals of the theory of soft decoding of redundant codes in the erasing communication channel]. Ul'yanovsk : UlGTU Publ., 2010. 379 p.
  4. Ganin D.V., Namestnikov S.M., Chilikhin N.Yu. Modifitsirovannye algoritmy leksikograficheskogo dekodirovaniya polyarnykh kodov v sisteme obrabotki izobrazhenii [Modified algorithms for the lexicographic decoding of polar codes in an image processing system]. Vestnik NGIEI [Herald NGIEI], 2017. No. 11 (78). Pp. 7–22.
  5. Druzhinin E. A., Yashin C. A., Kritskii D. N. Analiz vliyaniya funktsional'nogo naznacheniya i zon primeneniya na strukturu i kharakteristiki bezopasnykh k ispol'zovaniyu v vozdushnom prostranstve BAK [Analysis of the influence of the functional purpose and application areas on the structure and characteristics of the UAV safe for use in the airspace]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii [Open information and computer integrated technologies], 2012. No. 54. Pp. 60–67.
  6. Bespilotnaya aviatsiya: terminologiya, klassifikatsiya, sovremennoe sostoyanie [Unmanned aircraft: terminology, classification, current state]: URL: http://coollib.com/b/322192/read#3 (Access date 17.04.2019).
  7. Morelos-Saragosa R. Iskusstvo pomekhoustoichivogo kodirovaniya. Metody. algoritmy. Primenenie [The art of noise-tolerant coding. Methods, algorithms. Application]. Moscow: Tekhnosfera Publ., 2005. Pp. 213–216. http://coollib.com/b/322192/read#3 (Access date 17.04.2019).
  8. Piterson U., Ueldon E. Kody, ispravlyayushchie oshibki [Codes that correct errors]. Moscow: MIR Publ., 1976. Pp. 76–78.
  9. Rostopchin V. V. Sovremennaya klassifikatsiya bespilotnykh aviatsionnykh sistem voennogo naznacheniya [Modern classification of unmanned aviation systems for military purposes]. Internet-izdanie UAV.ru. [Internet-edition UAV.ru]. URL: http://uav.ru/articles/bas.pdf (Access date 12.04.2019).
  10. Shamin A. A. Povyshenie energeticheskoi effektivnosti elementov sensornykh setei metodom perestanovochnogo dekodirovaniya [Enhancing the energy efficiency of elements of sensor networks by the permutation decoding method]. Vestnik NGIEI [Herald NGIEI], 2017. No. 10 (77). Pp. 24–34.
  11. Shakhtanov S. V. Perestanovochnoe dekodirovanie nedvoichnykh izbytochnykh kodov [Permutation decoding of nonbinary redundant codes]. Vestnik NGIEI [Herald NGIEI], 2017. No. 8 (75) Pp. 7–14.
  12. Gladkikh A.A. et al. Perestanovochnyi dekoder s pamyat'yu [Permutation decoder with memory]. Pat. RF 2672300. No. 2017114324 ; applied 24.04.2017 ; publ. 13.11.2018. Bull. No. 32.
  13. Gladkikh A. A., Klimov R. V. Sorokin I. A. Metody snizheniya vnutrisetevoi nagruzki v raspredelennykh sistemakh khraneniya dannykh [Methods to reduce internal network load in distributed data storage systems]. Avtomatizatsiya protsessov upravleniya [Automation of management processes], 2015. No. 3 (41). Pp. 34–40.
  14. Gladkikh A.A., Namestnikov S.M., Pchelin N.A. Effektivnoe perestanovochnoe dekodirovanie dvoichnykh blokovykh izbytochnykh kodov [Effective commutation decoding of binary block redundant codes]. Avtomatizatsiya  protsessov  upravleniya [Automation of management processes], 2017. No. 1 (47). Pp. 67–74.
  15. Gladkikh A.A. Sposob myagkogo dekodirovaniya sistematicheskikh blokovykh kodov [Method for soft decoding of systematic block codes]. No. 2010135507/08 ; Patent RF 2444127. applied 24.08.2010 ; publ. 27.02.2012, Bull. No. 6.
  16. Kerns A. J., Shepard D. P. et al. Unmanned Aircraft Capture and Control via GPS Spoofing. The University of Texas at Austin Austin, TX 78712. 29 p.
  17. Chowdhury M. U., Bulut E., Ismail Guvenc I. Trajectory Optimization in UAV-Assisted Cellular Networks under Mission Duration Constraint. IEEE Radio Wireless Week 2019, Orlando, FL. 2019. 5 p.
  18. d’Andrea C., Garcia-Rodriguez A. et al. Cell-free Massive MIMO for UAV Communications. University of Cassino and Southern Latium, Cassino, Italy. 2019. 6 p.