MODELING OF ELECTROMAGNETIC FIELDS CREATED BY TRACTION NETWORKS DURING THE MOTION OF HIGH-SPEED AND HEAVY TRAINS

Авторы: 
Дата поступления: 
16.04.2019
Библиографическое описание статьи: 

Bezridnyi E. S., Buyakova N. V., Kryukov A. V. Modelirovanie elektromagnitnykh polei, sozdavaemykh tyagovymi setyami pri dvizhenii vysokoskorostnykh i tyazhelovesnykh poezdov [Modeling of electromagnetic fields created by traction networks during the motion of high-speed and heavy trains]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 63, No. 3, pp. 60–69. DOI: 10.26731/1813-9108.2019.3(63).60–69

Рубрика: 
Год: 
2019
Номер журнала (Том): 
УДК: 
621.311, 621.331
DOI: 

10.26731/1813-9108.2019.3(63).60–69

Файл статьи: 
Страницы: 
60
69
Аннотация: 

The article presents computer technology for modeling electromagnetic fields in traction networks of railways during the motion of high-speed and heavy trains. The motion of this kind of trains is accompanied by an increase in traction loads, which can lead to a deterioration of the electromagnetic environment in traction networks. Important parameters characterizing the electromagnetic environment are the strengths of the electric and magnetic fields. Therefore, the task of determining the strengths when creating polygons of high-speed and heavy traffic becomes relevant. Methods and tools of modeling the modes of traction power supply systems based on phase coordinates, developed at Irkutsk State Transport University, make it possible to determine the strengths of electromagnetic fields in the process of calculating the mode. The results of computer modeling allowed us to formulate the following conclusions: when high-speed trains are moving, there is an increase in voltage drops in the traction network, which results in a slight decrease (by 0,3 %) of the maximum electric field strengths; average values of this indicator grow by 0,2 % due to the increase in time intervals in which there were no trains in the inter-substation zones; a significant increase in traction loads during the motion of Sapsan electric trains leads to a twofold increase in the magnetic field strengths and deterioration in the electromagnetic environment for this indicator; when expanding the polygons and the amount of high-speed traffic, measures should be planned to improve the conditions of electromagnetic safety on passenger platforms; train masses ambiguously affect the dependence of field strengths on time when trains move on the ascending grade; this is due to increase in inter-train intervals with growth in the mass of trains; the largest fluctuations in strengths are observed for trains with maximum mass; an increase in the electric field strength and a decrease in the magnetic field strength at the end of the simulation time interval is due to the departure of the bunch of trains from the considered inter-substation zone.

Список цитируемой литературы: 

1.   Kiselev I.P., Blazhko L.S., Burkov A.T. et al. Vysokoskorostnoi zheleznodorozhnyi transport: obshchii kurs. In 2 vols. Vol.1. Moscow: FSBEI "Educational and Methodological Center for Education in Railway Transport" Publ., 2014. 306 p.

2.   Shalimov M.G., Maslov G.P., Magai G.S. Sovremennoe sostoyanie i puti sovershenstvovaniya si-stem elektrosnabzheniya elektricheskikh zheleznykh dorog [Current status and ways to improve the power supply systems of electric railways]. Omsk: 2002. 49 p.

3.   Lapidus B.M. Nauchnoe obespechenie programmy [Scientific support of the program]. Zheleznodorozhnyi transport [Railway transport], No. 9. 2014. Pp. 15-18.

4.   Pekhterev F. S. Perspektivnye poligony obrashcheniya tyazhelovesnykh poezdov [Promising polygons for handling heavy trains]. Zheleznodorozhnyi transport [Railway transport], No. 9. 2014. Pp. 7-10.

5.   Gapanovich V. A. Otsenka vzaimodeistviya podvizhnogo sostava i puti [Assessment of the interaction of rolling stock and track]. Zheleznodorozhnyi transport [Railway transport], No. 9. 2014. Pp. 11-14.

6.   Kurbasov A. S. Tyazhelovesnoe dvizhenie gruzovykh poezdov na rossiiskikh zheleznykh dorogakh: za i protiv [Heavy traffic of freight trains on Russian railways: pros and cons]. Nauka i transport [Science and transport], No. 3. 2012. Pp. 15-17.

7.   Bezridnyi E.S., Buyakova N.V., Kryukov A.V. Modelirovanie elektromagnitnykh polei, sozdavaemykh tyagovymi setyami pri dvizhenii vysokoskorostnykh poezdov [Modeling of electromagnetic fields created by traction networks during the movement of high-speed trains]. Vestnik AGTU [Vestnik of ASTU], No. 11. 2017. Pp. 13-17.

8.   Kryukov A.V., Zakaryukin V.P., Buyakova N.V. Upravlenie elektromagnitnoi obstanovkoi v tyago-vykh setyakh zheleznykh dorog [Management of the electromagnetic environment in traction networks of railways.]. Angarsk: AGTA Publ., 2014. 158 p.

9.   Kosarev A.B., Kosarev B.I. Osnovy elektromagnitnoi bezopasnosti sistem elektrosnabzheniya zh.-d. transporta [Fundamentals of electromagnetic safety of railway power supply systems]. Moscow: Intekst Publ., 2008. 480 p.

10. Apollonskii S.M., Kalyada T.V., Sindalovskii B.E. Bezopasnost' zhiznedeyatel'nosti cheloveka v elektromagnitnykh polyakh [Human life safety in electromagnetic fields]. St. Petersburg: Politekhnika Publ., 2006. 263 p.

11. Apollonskii S.M., Gorskii A.N. Raschety elektromagnitnykh polei [Calculations of electromagnetic fields]. Moscow: Marshrut Publ., 2006. 992 p.

12. Apollonskii S.M. Problemy elektromagnitnoi bezopasnosti na elektrifitsirovannoi zheleznoi doroge. V 2 tt. T. II. Elektromagnitnaya bezopasnost' na zheleznoi doroge s peremennym tokom v tyagovoi seti [Problems of electromagnetic safety on an electrified railway. In 2 vols. Vol. II. Electromagnetic safety on the railway with alternating current in the traction network]. Moscow: RUSAINS Publ., 2017, 414 p.

13. Ogunsola A., Mariscotti A. Electromagnetic Compatibility in Railways. London: Springer, 2013, 529 p.

14. Ogunsola A., Reggiani U., Sandrolini L. Modelling Electromagnetic Fields Propagated from an AC Electrified Railway Using TLM. International Symposium on Electromagnetic Compatibility, EMC’09. Kyoto, 2009. Pp. 567-570.

15. Sidorov A.I., Okrainskaya I.S. Elektromagnitnye polya vblizi elektroustanovok sverkhvysokogo napryazheniya [Problems of electromagnetic safety on an electrified railway. In 2 vols. T. II. Electromagnetic safety on the railway with alternating current in the traction network]. Chelyabinsk: YuUrGU Publ., 2008. 204 p.

16. Tsitsikyan G.N. Elektromagnitnaya sovmestimost' v elektroenergetike [Electromagnetic compatibility in the electric power industry]. St. Petersburg: Elmor Publ., 2007. 184 p.

17. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh system [Complex asymmetric modes of electrical systems]. Irkutsk: Irkut. un-ty Publ., 2005. 273 p.

18. Zakaryukin V.P., Kryukov A.V., Buyakova N.V. Improvement of Electromagnetic Environment in Traction Power Supply Systems. The power grid of the future. Proceeding No. 2. Otto-von-Guericke University Magdeburg. Magdeburg. 2013. Pp. 39-44.

19. Buyakova N., Zakarukin V., Kryukov A. Imitative Modelling of Electromagnetic Safety Conditions in Smart Power Supply Systems. Advances in Intelligent Systems Research. Vol. 158. Vth International workshop “Critical infrastructures: contingency management, intelligent, agent-based, cloud computing and cyber security” (IWCI 2018), 2018. Pp. 20-25.

20. Buyakova N., Zakaryukin V., Kryukov A., Nguyen T. Electromagnetic Safety Enhancing in Railway Electric Supply Systems. E3S, Web of Conferences 58, 01006(2018) RSES 2018, Pp. 1-6.

21. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Modeling of electrical fields in railway engineering structures. Advances in Engineering Research. Vol. 158. International Conference on Aviamechanical Engi-neering and Transport (AviaENT 2018). 2018. Pp. 219-225.