DEVELOPMENT OF METHODS OF CALCULATION AND DESIGN OF TECHNOLOGICAL SUPPORT AND IMPROVING THE QUALITY OF POLYMERIC PRODUCTS OF COMPLEX CONFIGURATION

Дата поступления: 
16.05.2019
Библиографическое описание статьи: 

Larchenko A. G., Filippenko N. G. Razrabotka metodiki rascheta i proyektirovaniya tekhnologicheskogo osnashcheniya povysheniya kachestva polimernykh izdeliy slozhnoy konfiguratsii [Development of methods of calculation and design of technological support and improving the quality of polymeric products of complex configuration]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 64, No. 4. Pp. 29–35. DOI: 10.26731/1813-9108.2019.4(64).29-35

Год: 
2019
Номер журнала (Том): 
УДК: 
620.192
DOI: 

10.26731/1813-9108.2019.4(64).29–36

Файл статьи: 
Страницы: 
29
36
Аннотация: 

In this scientific work, the authors touch upon the issue of non-destructive testing and improvement of performance properties in the modern production process of parts of complex configuration of polymeric materials. The article substantiates the choice of the method of high-frequency diagnosis as the most suitable for assessing the quality of products in the manufacture and in the course of repair work. It presents the process of diagnostics of polymer materials on a control device developed in the course of the study. The detailed description and the principle of operation of the device are also stated in the work. In addition, the proposed article describes the development of a technique for designing technological tool set to implement the process of diagnosing products of complex configuration on an industrial scale. The authors present an important stage of the study – the calculation of the parameters of the air gap of the structure of the electrodes, which provides a mandatory condition of control: the uniformity of the energy acting on the product elements. The described results allow determining the total capacitance of any system of series-connected capacitors in the diagnosis of spatial shape. Also, the calculations presented in the article make it possible to design technological equipment to improve the quality of products of different configuration by their uniform heating by high-frequency field. The paper solved the subproblem of electrode fabrication for experimental diagnosis, which allowed confirming the decisions made and theoretical studies. The paper draws conclusions and sets goals for further research.

Список цитируемой литературы: 
  1. Vorotilkin A.V., Kargapoltsev S. K., Gozbenko V. E. Mathematical model of dynamic interaction in the "wheel-rail" system taking into account their lubrication. Deposited manuscript No. 152-In 2006 13.02.2006
  2. The Vorotilkin, A. V., Gasenko V. E., Kargapoltsev S. K., Khomenko A. P., Korchevin N. And. Composition for reducing wear in a friction pair wheel – rail. The patent for the invention EN 2318013 C1, 27.02.2008. Application no. 2006131639/04 dated 01.09.2006.
  3. Gozbenko V.E., Khomenko A.P., Kargapoltsev S.K., Minaev N.V., Karlina A.I. Сreating of the alternative lubricants and practice of their use. International Journal of Applied Engineering Research. 2017. Т. 12. № 22. С. 12369-12372.
  4. Khomenko A.P., Gozbenko V.E., Kargapoltsev S.K., Minaev N.V., Karlina A.I. Сomparative analysis of simulation results and test of the dynamics of the wheelset. International Journal of Applied Engineering Research. 2017. Т. 12. № 23. С. 13773-13778.
  5. Livshits A.V., Filippenko N.G., Kargapol'tsev S.K. Vysokochastotnaya obrabotka polimernykh materialov. Organizatsiya sistem upravleniya [High-frequency processing of polymeric materials. Organization of control systems]. Irkutsk 2013.
  6. Livshits A.V. Upravlenie tekhnologicheskimi protsessami vysokochastotnoi elektrotermii polimerov [Control of technological processes of high-frequency electrothermal polymers]. Problemy mashinostroeniya i avtomatizatsii [Engineering and automation problems], 2015. No. 3, pp. 120-126.
  7. Popov S.I., Livshits A.V., Filippenko N.G. Vosstanovlenie podshipnikov buksovykh uzlov podvizhnogo sostava [Restoration of bearings of axlebox units of rolling stock]. Sbornik nauchnykh trudov SWorld [Collection of scientific papers SWorld], 2012. Vol. 2. No. 3, pp. 39-42.
  8. Livshits A.V. Avtomatizirovannaya sistema nauchnykh issledovanii vysokochastotnoi elektrotermii [Automated system for scientific research of high-frequency electrothermia]. Problemy mashinostroeniya i avtomatizatsii [Engineering and automation problems], 2015. No. 4, pp. 54-60.
  9. Filippenko N.G. Metodika avtomatizatsii protsessa elektrotermicheskogo nagreva polimernykh materialov [Technique of automation of the process of electrothermal heating of polymeric materials]. Avtomatizatsiya. Sovremennye tekhnologii [Automation. Modern technologies], 2017. Vol. 71. No. 7, pp. 291-295.
  10. Larchenko A. G. Avtomatizirovannoe ustroistvo diagnostirovaniya polimernykh izdelii slozhnoi konfiguratsii metodom vysokochastotnogo izlucheniya [An automated device for diagnosing polymer products of complex configuration by high-frequency radiation]. Kontrol'. Diagnostika [Control. Diagnostics], 2016. No. 2, pp. 61 – 65.
  11. Larchenko A. G., Livshits A. V., Popov S. I. Ustroistvo diagnostiki detalei iz poliamidnykh materialov [Diagnostic device for parts made of polyamide materials]. Pat. 132209 RF MPK G01N29/04. Applied Sept 10, 2013, No.132209.
  12. Filatova S.N., Bychkovskii V.S. Bakanin D.V. Ispol'zovanie vysokochastotnogo nagreva pri izgotovlenii sendvich-panelei s uteplitelem na osnove kremosoderzhashchikh otkhodov proizvodstv [The use of high-frequency heating in the manufacture of sandwich panels with insulation based on cream-containing industrial waste]. XI Mezhdunarodnyi simpozium «Innovatsii i obespechenie bezopasnosti ekspluatatsii sovremennykh zheleznykh dorog» [XI International Symposium "Innovations and ensuring the safety of modern railways], 2018.
  13. Larchenko A. G. Sistema avtomatizirovannogo upravleniya vysokochastotnym diagnostirovaniem pri proizvodstve i ekspluatatsii izdelii iz polimernykh materialov: dis. … kand. tekh. nauk [The system of automated control of high-frequency diagnostics in the production and operation of products from polymeric materials: Ph.D. (Engineering) diss.]: 05.13.06; Irkutsk, 2014. 164 p.
  14. Livshits A. V. Nesimmetrichnye termoizolyatory pri vysokochastotnoi elektrotermii polimerov [Asymmetric thermal insulators in high-frequency electrothermal polymers]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and education: N.E. Bauman MSTU scientific publication], 2014. No. 5, pp. 31-40.
  15. Bykov B. V. Konstruktsiya telezhek gruzovykh i passazhirskikh vagonov: Illyustrirovannoe uchebnoe posobie [The design of bogies of freight and passenger cars: An illustrated study guide]. Moscow: Marshrut Publ., 2004. — 36 p.
  16. Kargapoltsev S. K. Residual deformations during milling of low-rigid parts with reinforcement. Scientific editor A. I. Prompt. Irkutsk, 1999.
  17. Butorin D. V. Mathematical modeling of electrothermetic processes on the example of high-frequency welding of the party of polymeric products. The collection includes 7th International Conference «Recent trend in Science and Technology management» by SCIEURO in London, 27-29 July 2018. London: SCIEURO, 2018, pp. 49-59.
  18. Butorin D. V. Automation of the Process of Control of States of Polymer Materials at Electrothermal Treatment. Proceedings of the 6th International Symposium on Innovation and Sustainability of Modern Railways, ISMR 2018 (Russia, Irkutsk, 25-28 September, 2018). Beijing: China Railway Publishing House, 2018.  Pp. 306-309
  19. Livshits A. V. Mathematical modeling of the processes of the high-frequency heating of thermoplasts and quality improvement of welded polymeric items. JP Journal of Heat and Mass Transfer, 2017. Pushpa Publishing House, Allahabad, India.
  20. Livshits A. V. Issledovanie protsessa vysokochastotnoi elektrotermii termoplastov na osnove ego matematicheskogo modelirovaniya [Investigation of the process of high-frequency electrothermal thermoplastics based on its mathematical modeling]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2014. No. 2 (22), pp. 90-98.