DETERMINATION OF EXTERNAL POWER FACTORS ACTING ON AN UNMANNED AERIAL VEHICLE IN CRITICAL FLIGHT MODES

Дата поступления: 
10.10.2019
Библиографическое описание статьи: 

Smirnov A. N., Govorkov A. S. Opredeleniye vneshnikh silovykh faktorov, deystvuyushchikh na bespilotnyy letatel'nyy apparat na kriticheskikh rezhimakh poleta [Determination of external power factors acting on unmanned aerial vehicle on critical flight modes]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 64, No. 4. Pp. 125–131. DOI: 10.26731/1813-9108.2019.4(64). 125-131

Рубрика: 
Год: 
2019
Номер журнала (Том): 
УДК: 
621
DOI: 

10.26731/1813-9108.2019.4(64).125–131

Файл статьи: 
Страницы: 
125
131
Аннотация: 

The use of modern software at the initial design stages, such as Siemens NX and FloEFD, makes it possible to design, manufacture and then operate unmanned aerial vehicles with competitive performance characteristics. This article presents calculations of the operational parameters of an unmanned aerial vehicle at the conceptual design stage, the operating external force factors at critical flight conditions for further use at the stage of detailed design and manufacturing. It gives a brief overview of the design of the developed unmanned aerial vehicle. A simplified three-dimensional geometric model of a UAV has been built. On its basis, a virtual aerodynamic analysis of the chosen design of the developed unmanned aerial vehicle was carried out in the Siemens FloEFD computer complex. The dependences of the available normal velocity and the available tangential overloads on the speed of horizontal flight are obtained. The minimum permissible horizontal flight speed is calculated. The aerodynamic coefficients of the used wing profile in the UAV design are provided. The value of the available tangential overload for different flight speeds is obtained. The dependence of the maximum inclination angle of the trajectory on the flight speed when flying near the ground is constructed. The minimum allowable take-off speed at launch from a catapult is calculated, and the allowable angle of inclination of the trajectory during straight climb is determined from this speed. The pressure distribution on the outer surface of the fuselage and the wing consoles of the unmanned aerial vehicle was obtained, with the value of the effective longitudinal force being calculated for take-off modes with different inclinations of the trajectory and for horizontal straight flight at a constant speed.

Список цитируемой литературы: 
  1. Petrov M.V. Prakticheskii opyt ispol'zovaniya BPLA swinglet proizvodstva kompanii senseFly (Shveitsariya) [Practical experience of using UAV swinglet manufactured by senseFly (Switzerland)]. Interekspo Geo-Sibir' – Novosibirsk: SGUGiT Publ., 2013. 42 p.
  2. Voropaev N.P. Primenenie bespilotnykh letatel'nykh apparatov v interesakh MChS Rossii [The use of unmanned aerial vehicles in the interests of the Russian Emergencies Ministry]. Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoi protivopozharnoi sluzhby MChS Rossii [The Bulletin of the St. Petersburg University of the Russia Emergency Ministry State Fire Service]. St. Petersburg: SPB UGPS MChS Rossii Publ., 2014. 13 p.
  3. Vasin K.V., Gerasimov S.G. Ispol'zovanie bespilotnykh letatel'nykh apparatov – novoe slovo v progressivnom zemledelii [The use of unmanned aerial vehicles - a new word in progressive agriculture]. Geoprofi [The geoprof]  No. 5. Moscow: OOO GROM Publ., 2014, pp. 46-50
  4. Nickel K., Wohlfahrt M. Tailless aircraft in theory and practice. Washington, DC: American Institute of Aeronautics and Astronautics, 1994. 498p. ISBN 1563470942.
  5. Smirnov A.N., Govorkov A.S. Razrabotka elevona dlya bespilotnogo letatel'nogo apparata [Development of an elevon for an unmanned aerial vehicle]. Sbornik statei uchastnikov I vserossiiskoi nauchnoi konferentsii Informatsionnye tekhnologii v modelirovanii i upravlenii: podkhody, metody, resheniya [Collection of articles by participants of the I All-Russian Scientific Conference on Information Technologies in Modeling and Management: Approaches, Methods, Solutions]. Tol'yatti: TGU Publ., 2017, pp. 233-239
  6. Smirnov A.N., Govorkov A.S. Kinematicheskii analiz dvizheniya elevona v konstruktsii kryla BPLA [Kinematic analysis of the elevon movement in the UAV wing design]. Sbornik statei uchastnikov X mezhdunarodnoi nauchno-tekhnicheskoi konferentsii Aviamashinostroenie i transport Sibiri [Collection of articles by participants of the X International Scientific and Technical Conference Aircraft Engineering and Transportation of Siberia]. Irkutsk:  IRNITU Publ., 2018, pp. 95-102
  7. Austin R. Unmanned aircraft systems: UAVs design, development and deployment. John Wiley & Sons, 2011. Vol. 54.
  8. Fahlstrom P., Gleason T. Introduction to UAV systems.  John Wiley & Sons, 2012. 62 p.
  9. Bobarika I.O., Molokova S.V. Primenenie matematicheskikh sredstv modelirovaniya pri aerodinamicheskom proektirovanii letatel'nykh apparatov [The use of mathematical modeling tools in the aerodynamic design of aircraft]. Reshetnevskie chteniya [The Reshetnev readings]. Krasnoyarsk: M.F. Reshetnev SibGU Publ., 2013. 6 p.
  10. Gozbenko V.E., Kargapoltsev S.K., Minaev N.V., Karlina A.I. Simulation of the vibration of the carriage asym-metric parameters in MATHCAD. International Journal of Applied Engineering Research, 2016. Vol. 11. No. 23, pp. 11132-11136.
  11. Khomenko A.P., Gozbenko V.E., Kargapoltsev S.K., Minaev N.V., Karlina A.I. Comparative analysis of simulation results and test of the dynamics of the wheelset. International Journal of Applied Engineering Research, 2017. Vol. 12. No. 23. pp. 13773-13778.
  12. Gozbenko V.E., Kargapoltsev S.K., Karlina Yu.I., Karlina A.I., Artyunin A.I. Automation of the motion process of the materials which are subject to the incoming quality control. Advances and Applications in Discrete Mathematics. 2018. Vol. 19. No. 3, pp. 289-297.
  13. Gurov L.V., Dumnov G.E., Ivanov A.V. Primenenie vychislitel'nogo kompleksa FLoEFD dlya rascheta aerodinamiki letatel'nykh apparatov s gazostruinymi organami upravleniya [Application of the FLoEFD computing complex for calculating aerodynamics of aircraft with gas-jet controls]. Vestnik kontserna PVO Almaz-Antei [The Bulletin of the Almaz-Antey Air Defense Concern]. Moscow: VKO Almaz-Antei Publ., 2015, pp. 61-68
  14. Defoe G. L. A comparison of the aerodynamic characteristics of the normal and three reflexed airfoils in the variable density. Technical notes. Washington: Langley Memorial Aeronautical Laboratory, 1931. 13 p.
  15. Krivel' S.M. Dinamika poleta. Raschet letno-tekhnicheskikh i pilotazhnykh kharakteristik samoleta [Flight dynamics. Calculation of the flight technical and aerobatic characteristics of the aircraft]. Moscow: Lan' Publ., 2016.  25 p.
  16. Mednikov V.N. Dinamika poleta i pilotirovanie samoletov. Uchebnik [Flight dynamics and piloting of aircraft]. Monino: Yu.A. Gagarin VVA Publ., 1976. 155 p.
  17. Mueller T. J., DeLaurier J. D. Aerodynamics of small vehicles. Annual review of fluid mechanics, 2003. Vol. 35. No. 1, pp. 89-111.
  18. Karlina A.I., Gozbenko V.E. Modelirovanie ob"ektov mashinostroeniya dlya snizheniya vliyaniya vneshnikh vibratsionnykh vozdeistvii [Modeling the objects of mechanical engineering to reduce the influence of external vibration influence]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2016. Vol. 20. No. 10 (117), pp. 35-47.
  19. Shyy W. et al. A study of flexible airfoil aerodynamics with application to micro aerial vehicles. 28th Fluid Dynamics Conference, 1997, pp. 1933.