Automation of vibration amplitude control of technological vibration machine

Дата поступления: 
15.01.2020
Библиографическое описание статьи: 

Kruglov S. P., Kovyrshin S. V., Bolshakov R. S. Avtomatizaciya upravleniya amplitudoj kolebanij texnologicheskoj vibracionnoj mashin [Automation of vibration amplitude control of technological vibration machine]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020., Vol. 65, No. 1, pp. 21–30. 10.26731/1813-9108.2020.1(65).21-30

Год: 
2020
Номер журнала (Том): 
УДК: 
621.7.06; 519.714
DOI: 

10.26731/1813-9108.2020.1(65).21-30

Файл статьи: 
Страницы: 
21
30
Аннотация: 

The article proposes for consideration a method of semi-active control of oscillation amplitude of technological vibration machines with the vibration unit air suspension pressure change. It analyses a class of process machines which are mechanical oscillating systems, where metal balls thrown due to vibration. These balls interact with the processed part in order to strengthen its surface and are regarded as elements of the working medium. The necessary quality of processing is ensured by the fact that the working element of the vibration machine must perform only vertical translational motions with no rotational motions, i.e. have a uniform vibration field. An important feature is the organization of operation of the vibration unit in conditions of a priori uncertainty about the parameters of the unit with process load: its mass, moment of inertia, location of the center of gravity, as well as parameters of the vibration unit that change during operation. The proposed control method is based on the use of the regulator with static adaptation, which during its operation performs current estimation of object gain factor by controlled value in low frequency area. Based on this estimate, the control signal is adjusted. A characteristic feature of the named regulator, unlike the classical control loop, is the use of the multiplication-division element at its input. The paper considers features and operating conditions of this regulator. The model example shows the efficiency of the proposed method of controlling the oscillation amplitude of a vibration unit. It is also shown that the proposed control method can be used for other semi-active vibration control methods as well as for controlling other characteristics of vibration units.

Список цитируемой литературы: 
  1. Goncharevich I.F., Frolov K.V. Teoriya vibratsionnoi tekhniki i tekhnologii [Theory of Vibration Engineering and Technology]. Мoscow: Nauka Publ., 1981. 320 p.
  2. Nessler P. Modeling and control in mechanical systems. Uppsala Univ. Sweden. URL: http://www.it.uu.se 2005.
  3. Babichev A.P., Babichev I.A. Osnovy vibratsionnoi tekhnologii [The Basics of Vibration Technology]. Rostov-on-Don: The DGTU Center Publ., 2008, 693 p.
  4. Kopylov Yu.R. Dinamika protsessov vibroudarnogo uprochneniya [Dynamics of vibro-impact hardening processes]. Voronezh: Voronezh: Nauchnaya Kniga Publ., 2011, 568 p.
  5. Banakh L.Ya., Kempler M.L. Vibrations of mechanical systems with regular structure. Springer series: Foundation of Engineering Mechanics, 2011, 350 p.
  6. Eliseev A.V., Sel’vinsky V.V., Eliseev S.V. Dinamika vibratsionnykh vzaimodeistvii elementov tekhnologicheskikh sistem s uchetom neuderzhivayushchikh svyazei [Dynamics of vibrational interactions of elements of technological systems taking into consideration unilateral constraints]. Novosibirsk: Nauka Publ., 2015, 332 p.
  7. De Silva C. W. Vibration. Fundamentals and Practice. Boca Raton, London, New York, Washington, D.C.: CRC Press, 2000. 957 p.
  8. Eliseev S.V., Koshuba V.B., Pnyov A.G., Eliseev A.V., Saitov I.S. Neuderzhivayushchie svyazi v dinamicheskikh vzaimodeistviyakh sypuchei sredy i vibriruyushchei poverkhnosti: nauchno-metodologicheskoe obosnovanie tekhnologii protsessov vibratsionnogo uprochneniya [Unilateral constraints in dynamic interactions of loose medium and vibrating surface: scientific and methodological justification of vibration hardening process technology]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2014, No. 3(23), pp. 17–31.
  9. Eliseev S.V. Prikladnoi sistemnyj analiz i strukturnoe matematicheskoe modelirovanie (dinamika transportnykh i tekhnologicheskikh mashin: svyaznost` dvizhenii, vibratsionnye vzaimodeistviya, rychazhnye svyazi): monografiya [Applied system analysis and structural mathematical modeling (dynamics of transport and technological machines: connectivity of motions, vibrational interactions, lever linkages): a monograph]. Irkutsk: IrGUPS Publ., 2018, 692 p.
  10. Springer H., Kovyrshin S. Active parametric vibration control of a smart beam. IMechE Event Publications Eighth International Conference on Vibrations in Rotating Machinery. “Eighth International Conference on Vibrations in Rotating Machinery – IMechE Conference Transactions”. Swansea, 2004, pp. 703–712.
  11. Eliseev S.V., Kuznetsov N.K., Bolshakov R.S., Nguyen D.H. O vozmozhnostyakh ispol`zovaniya dopolnitel`nykh svyazei inertsionnogo tipa v zadachakh dinamiki tekhnicheskikh sistem [About the possibilities of using additional inertial constraints in the problems of dynamics of technical systems]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [The Bulletin of Irkutsk State Technical University]. Irkutsk, 2016. No. 5 (112), pp. 19–36.
  12. Eliseev S.V., Artyunin A.I. Prikladnaya teoriya kolebanii v zadachakh dinamiki lineinykh mekhanicheskikh sistem [Applied theory of oscillations in problems of the dynamics of linear mechanical systems]. Novosibirsk: Nauka Publ., 2016, 459 p.
  13. Buryan Yu.A., Balakin P.D., Sorokin V.N. K voprosu o stabilizatsii amplitudy kolebanii mekhanicheskoi sistemy [On the issue of stabilization of the oscillation amplitude of a mechanical system]. Omskii nauchnyi vestnik [Omsk scientific bulletin], 2014, No. 2 (130), pp. 38–44.
  14. Zagrivny E.A., Ivanik V.V. Stabilizatsiya amplitudy kolebanii avtorezonansnogo asinkhronnogo elektroprivoda vozvratno-vrashchatel`nogo dvizheniya dinamicheski uravnoveshennogo burovogo snaryada na gruzonesushchem kabele [Stabilization of the oscillation amplitude of an autoresonance asynchronous electric drive of a reciprocating rotational motion of a dynamically balanced drill string on a carrying cable]. Zapiski Gornogo instituta [The Journal of Mining Institute], Vol. 189. St. Petersburg, 2011, pp. 91–94.
  15. Shestakov V.M., Belokuzov E.V., Epishkin A.E. Sintez zakonov upravleniya rezhimami raboty avtomatizirovannykh vibratsionnykh ustanovok [Synthesis of laws governing the operation modes of automated vibration systems]. Elektrichestvo Publ., 2013, No. 11, pp. 31–36.
  16. Astrom K.J., Hagglund T. Advanced PID control. ISA. The Instrumentation Systems and Automation Society, 2006, 460 p.
  17. Andrievsky B.R., Blekhman I.I., Bortsov Yu.A., Gavrilov S.V., Konoplev V.A., Lavrov B.P., Polyakhov N.D., Tomchin O.P., Fradkov A.L., Shestakov V.M. Upravlenie mekhatronnymi vibratsionnymi ustanovkami [Control of mechatronic vibration units]. In Blekhman I.I., Fradkov A.L. (eds.) St. Petersburg: Nauka Publ., 2001, 278 p.
  18. Buryan Yu.A., Sorokin V.N., Kapelukhovsky A.A. Sistema upravleniya intensivnost`yu izlucheniya uprugikh voln skvazhinnym generatorom [The system of controling the radiation intensity of elastic waves by the downhole generator]. Omskii nauchnyi vestnik [Omsk scientific bulletin]. 2011, No. 1(97), pp. 75–79.
  19. Eremin E.L., Telichenko D.A., Semichevskaya N.P., Chepak L.V., Shelenok E.A. Upravlenie tekhnicheskimi sistemami v usloviyakh neopredelennosti. Monografiya [Control of technical systems in the conditions of uncertainty. A monograph]. Blagoveshchensk. AmSU Publ., 2014, 211 p.
  20. Krisinski T., Malburet F. Mechanical vibration: Active and passive control. ISTE, 6 Fitzroy Square, London W1T 5DX, UK. 2007, 367 p.
  21. Astrom K.J., Wittenmark B. Adaptive control. Second edition. Mineola, New York: Dover Publication, Inc. 2008, 573 p.
  22. Kruglov S.P. Usloviia adaptiruemosti sistem upravleniia s identifikatorom i jetalonom [Conditions of an adaptability of control systems with identifier and standard]. Monograph, Saarbucken. LAP LAMBERT. 2012, 125 p.
  23. Kruglov S.P. Stabiliziruyushchii regulyator so staticheskoi adaptatsiei [The stabilizing controller with static adaptation]. Informatsionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami: elektron. nauch. zhurn. [Information technology and mathematical modeling in controlling complex systems: an electron. scientific journal], 2019, No. 2, pp. 1–11. Access mode: http://ismm-irgups.ru/toma/23-2019, free. Title from the screen. Rus., Engl. (reference data: 06/05/2019).
  24. Eliseev S.V., Eliseev A.V., Khomenko A.P., Artyunin A.I., Pnev A.G., Kashuba V.B. Sposob upravleniya kharakteristikoi vibratsionnogo polya i ustroistvo dlya ego osushchestvleniya [Vibration field characteristic control method and device for its implementation]. Patent RU 2624829 C1, G01M 7/00., 28.12.2015.
  25. Eliseev S.V., Eliseev A.V., Kaimov E.V., Nguen D.H., Vyong K.Ch. Sposob upravleniya strukturoi vibratsionnogo polya vibratsionnoi tekhnologicheskoi mashiny na osnove ispol`zovaniya effektov dinamicheskogo gasheniya i ustroistvo dlya ego osushchestvleniya [Method of controlling vibration field structure of vibration processing machine based on dynamic damping effects and apparatus for realizing the said method]. Patent RU 2624757 C1, F16F 15/02., 25.01.2016.