РЕШЕНИЕ ПЕРЕОПРЕДЕЛЕННОЙ ЛИНЕЙНОЙ СИСТЕМЫ УРАВНЕНИЙ ПРИ ПОЛИНОМИАЛЬНОМ СИНТЕЗЕ РЕГУЛЯТОРОВ

Аннотация. При модальном синтезе многоканальных линейных систем с использованием левых/правых полиномиальных разложений в основе метода лежит решение матричного полиномиального уравнения, называемого диофантовым уравнением. При решении его переходит от полиномиальных описаний к эквивалентным числовым матрицам. При этом возникающее матричное не полиномиальное эквивалентное уравнение, как правило, имеет матрицу пониженного ранга (вырожденную матрицу). Для решения такой системы уравнений необходимо осуществить перенос линейно-зависимых строк с соответствующими независимыми в правую часть. Кроме того, для перехода к квадратной матрице при неизвестных удалить линейно-зависимые столбцы этой матрицы и соответствующие столбцы из правой части уравнения. После решения усеченной системы уравнений необходимо вернуться к исходной системе. При этом получаем решение линейной системы с дополнительными ограничениями. Как правило, эти ограничения накладываются на вид желаемой характеристической матрицы и на полиномиальные матрицы, соответствующие полиномиальному разложению многоканального регулятора. Рассматриваются различные случаи задания объекта, соответствующие вырожденной и невырожденной полиномиальной матрице «именителя» объекта. Иллюстрация расчетов, для исключения громоздких выкладок, проводится на примере объекта невысокого порядка. Предлагаемая методика иллюстрируется на примере синтеза двухканальной системы.

Ключевые слова: линейные системы, вырожденная матрица, матричные передаточные функции, матричное полиномиальное представление, эквивалентный характеристический полином, модальный синтез регулятора, переходные процессы.

A. A. Voevoda, K. M. Bobobekov
Novosibirsk State Technical University, Novosibirsk, the Russian Federation
Received: October 16, 2017

SOLUTION OF AN OVERDETERMINED LINEAR SYSTEM OF EQUATIONS FOR POLYNOMIAL SYNTHESIS OF REGULATORS

Abstract. In modal synthesis of multichannel linear systems using left / right polynomial expansions, the method is based on the solution of a matrix polynomial equation, called the diophantine equation. In its solution, one needs to pass from polynomial descriptions to the equivalent numerical matrices. In this case, the emerging matrix non-polynomial equivalent equation, as a rule, has a reduced-rank matrix (a degenerate matrix). To solve such a system of equations, it is necessary to transfer linearly dependent rows with the corresponding unknowns to the right-hand member. In addition, in order to proceed to a square matrix for unknowns, one needs to remove the linearly dependent columns of this matrix and the corresponding columns from the right side of the equation. After solving the "truncated" system of equations, it is necessary to return to the original system. In this case, we obtain a solution of the linear system with additional constraints. As a rule, these constraints are superimposed on the form of the desired characteristic matrix and on the polynomial matrices corresponding to the polynomial decomposition of the multichannel regulator. The article discusses various cases of the task object corresponding to singular and not singular polynomial matrix "denominator" of the object. An illustration of the calculations, in order to avoid cumbersome calculations, is carried out by the example of an object of a small order. The proposed technique is illustrated by the example of synthesis of a two-channel system.

Keywords: linear systems, degenerate matrix, matrix transfer functions, matrix polynomial representation, desired characteristic polynomial, modal regulator synthesis, transient processes.

Введение
Задача модального синтеза многоканальных систем автоматического управления может быть решена с использованием различных описаний. Чаще применяют математический аппарат на основе пространства состояний [13–15, 18, 19], при этом для оценки вектора состояния входят в об- ратную связь наблюдатель полного порядка [7], выход которого подается на вход статического многоканального регулятора. Устройство управ- ления в данном случае состоит из двух блоков – наблюдателя и статического звена. В каком-то смысле это недостаток данного метода: во-первых, наблюдатель - это динамическая система того же порядка, что и объект; во-вторых регулятор и наблюдатель расположены в обратной связи, что затрудняет обеспечение статического режима си- стемы управления. Для понижения порядка может быть использован наблюдатель пониженного по- рядка [6].
Альтернативный подход – это использо- вание матричных передаточных функций [13–15, 18,
или матричных полиномиальных представлений [13–15, 18, 19]. Каждое из этих направлений также имеет свои достоинства и недостатки. На взгляд авторов, второе направление, а именно использование матричных полиномиальных представлений, кажется наиболее перспективным [16, 17]. В данной работе, которая является продолжением исследований, начатых в работах [1–3, 6, 8, 12, 13], исследуются вопросы, связанные с синтезом регуляторов на основе матричных полиномиальных представлений. Одна из проблем, возникающих при такой постановке задачи, - это необходимость решения переопределенной системы линейных уравнений, а именно, решение матричного полиномиального так называемого дифференциального уравнения. При решении переопределенной линейной системы переходят от полиномиального описания объекта к системе матричных уравнений с числовыми коэффициентами. Это приводит к существенному увеличению размеров матриц и, как правило, к вырождению системы линейных уравнений. Под этим подразумевается вырождение матриц, составленных из коэффициентов матричной передаточной функции объекта. При решении такой системы необходимо из матрицы коэффициентов исключить линейно-зависимые строки и столбцы. Далее преобразованная система уравнений с уже невырожденной матрицей коэффициентов может быть решена. После чего необходимо с учетом найденного решения вернуться к исходной переопределенной системе уравнений. Это приводит к ограничению на выбор желаемой характеристики матрицы системы и на параметры регулятора. Другими словами, приходим к задаче решения системы линейных уравнений с ограничениями. Такой подход в некоторых частных случаях рассматривался в работе [1]. При этом не акцентировали внимание на возникающих дополнительных ограничениях, накладываемых на выбор параметров характеристической матрицы и определяющей структуры регулятора. Кроме того, в зависимости от исключаемых линейно-зависимых строк и столбцов матрицы коэффициентов, возможны различные варианты решения задачи синтеза регулятора. Вышеуказанные рассуждения продемонстрированы на двухканальном объекте при различных вариантах задания параметров объекта, приводящих к различного рода вырождению матриц, описывающих объект.

Постановка задачи
Поставлена задача уточнить методику синтеза многоканальных регуляторов, при использовании полиномиальных матричных разложений, изложенную в предыдущих публикациях. В последнее время при анализе и синтезе многоканальных систем автоматического управления используют матричные передаточные функции, где в значительной степени обобщаются формулы преобразования одноканальных систем. Например, если обозначить матричные передаточные функции регулятора и объекта через \( W_r(s) \) и \( W_o(s) \), то справедливы следующие соотношения:

\[
W_{zd}(s) = \left( I + W_r(s)W_o(s) \right)^{-1} W_o(s)W_r(s) = \\
= \left( I + W_o(s)W_r(s) \right)^{-1} W_o(s)W_r(s) = \\
= \left( \left( W_o(s)W_r(s) \right)^{-1} \left( I + W_o(s)W_r(s) \right) \right)^{-1} = \\
= \left( \left( W_o(s)W_r(s) + I \right) \left( W_o(s)W_r(s) \right)^{-1} \right)^{-1} = \\
= \left( W_o(s)W_r(s) \right)^{-1} \left( I + W_o(s)W_r(s) \right)^{-1}
\]

gде \( W_{zd}(s) \) – передаточная функция замкнутой системы. В данной работе используется полиномиальное матричное описание как объекта 

\[
W_o(s) = N_r(s)D^{-1}(s)
\]
– правое полиномиальное разложение, так и регулятора 

\[
W_r(s) = Y^{-1}(s)X_r(s)
\]
– левое полиномиальное разложение. При использовании полиномиальных разложений, которые нашли также широкое распространение при исследовании САУ, также в значительной степени формулы структурных преобразований одноканальных систем обобщаются на многоканальные системы

\[
W_{zd}(s) = \left( X^{-1}(s)Y(s)D(s)N^{-1}(s) + I \right)^{-1} = \\
= \left( X^{-1}(s)Y(s)D(s) + X(s)N(s) \right)^{-1} = \\
= N_r(s) \left( Y_r(s)D_r(s) + X_r(s)N_r(s) \right)^{-1} X_r(s),
\]
что упрощает исследование многоканальных САУ.

Если проанализировать примеры синтеза регуляторов в данной постановке, можно заметить, что не всегда удается получить желаемую характеристическую матрицу системы. По-видимому, это вызвано преобразованиями переопределенного матричного полиномиального дифференциального уравнения. В данной работе обращено внимание на преобразование матричного полиномиального дифференциального уравнения и проверку корректности этих преобразований. В результате вычислений обращено внимание на то, что некоторые матрицы, входящие в описание объекта, могут быть вырожденными. Это вносит дополнительные трудности при решении задачи синтеза, в частности, в некоторых случаях возникают трудности при попытке матричного моделирования объекта. В ка-
честно примера взят двухканальный неустойчивый объект, что позволяет избежать громоздких вычислений. Последовательность синтеза многоканальных регуляторов рассматриваемым методом можно подробно описать по работе [1], где исследуется модальный метод синтеза двухканального регулятора для механической системы, описывающей трёх дифференциальных уравнений второго порядка, что при описании объекта в пространстве состояний соответствует матрице A шестого порядка. Здесь подразумеваем стандартное описание

\[ y = Ax + Bu, \quad y = Cx. \]

В указанной работе [1] исследуется несколько вариантов синтезируемого регулятора и приведены соответствующие проверки на допустимые характеристики матрицы. В результате этих исследований предложена процедура синтеза регулятора, сводящаяся к перебору различных вариантов, позволяющих перейти от дифференциального первого определенного уравнения к невырожденному уравнению. К сожалению, эта процедура не до конца формализована и, кроме того, упущены некоторые возможные варианты синтезируемого регулятора.

В данной работе исходное описание объекта — правое полиномиальное матричное взаимно простое разложение \( D_r(s) \) и \( N_r(s) \). Выбор правого разложения объекта предполагает, что описание регулятора будет искать в виде левого полиномиального матричного взаимно простого разложения \( Y(s) \) и \( X(s) \). Выбранный вид разложений объекта и регулятора позволяет получить удобное для вычислений характеристическое матричное уравнение системы. Для отработки методики синтеза и исключения громоздких выводов взять в качестве объекта двухканальный неустойчивый объект.

Пусть дано описание двухканального объекта через полиномиальное матричное правое разложение:

\[
D_r(s) = \begin{bmatrix}
  d_{11}^0 s + d_{11}^0 & d_{12}^0 s - d_{12}^0 \\
  d_{21}^0 s - d_{21}^0 & d_{22}^0 s + d_{22}^0
\end{bmatrix},
\]

\[
N_r(s) = \begin{bmatrix}
  n_{11}^0 & n_{12}^0 \\
  n_{21}^0 & n_{22}^0
\end{bmatrix}.
\]

Далее рассмотрим несколько случаев задачи \( D_r \) и \( D_0 \), соответствующие различным видам вырожденности и невырожденности полиномиальной матрицы «занемагента» объекта, что приводит к необходимости вариации требуемых исследований.

**Пример: невырожденный случай**

\[ \det(D_r) \neq 0 \]

Зададим значения параметров двухканального объекта, например объект, содержащий интегратор:

\[
D_r(s) = \begin{bmatrix}
  s + 1 & s - 2 \\
  s - 2 & 2s + 4
\end{bmatrix}, \quad N_r(s) = \begin{bmatrix}
  2 & 0 \\
  3 & 1
\end{bmatrix}.
\]

В данном случае \( \det(D_r) \neq 0 \) и \( \det(D_0) = 0 \).

Выражение второго детерминанта не усложняет задачу. Уравнение объекта по входу и выходу записывается так:

\[
y(s) = \begin{bmatrix}
  2 & 0 \\
  3 & 1
\end{bmatrix}^{-1} \begin{bmatrix}
  s + 1 & s - 2 \\
  s - 2 & 2s + 4
\end{bmatrix} u(s) = u_1 \quad u_2.
\]

Реализация уравнения (3) в матричном виде приведена на рис. 1. При реализации этой структуры предполагается невырожденность матрицы \( D_r(s) \), то есть полагаем \( \det D_r(s) \neq 0 \).

**Рис. 1. Структурная схема многоканального объекта, представленная в виде правого матричного полиномиального разложения**

Воспользуемся рис. 1 и запишем выход первого блока

\[ z(s) = D_r^{-1}(s) u(s), \]

откуда

\[ D_r(s) z(s) = u(s). \]

В (5) подставим значение (2) полиномиальной матрицы \( D_r(s) \):

\[ (D_0 + D_r) z(s) = u(s). \]

Из уравнения (6) найдем \( z(s) \):

\[ z(s) = D_r^{-1} (D_0 z(s) + u(s)). \]

Запишем уравнение выхода объекта \( y(s) = N_r z(s). \)

В нашем случае \( N_r(s) = N_0 \), тогда

\[ y(s) = N_0 z(s). \]

Реализация объекта в полиномиальном виде в соответствии с уравнениями (7) и (8) приведена на рис. (2).
Кроме того, у этого объекта специфическое свойство — \( \det(D_0) \neq 0 \) и \( \det(D_1) = 0 \), что позволяет реализовать матричное моделирование объекта. Ниже исследуется вопрос синтеза регулятора для такого объекта, что позволит уточнить методику синтеза по сравнению с ранее известными публикациями [1–8, 12, 13].

**Синтез регулятора**

Для данного объекта рассмотрим задачу синтеза двухканального регулятора. Передаточная функция объекта в виде правого полиномиального разложения определяется по формуле:

\[
W_{ob}(s) = N_r(s)D_2^{-1}(s).
\]  
(9)

В соответствии со сказанным во введении при правом полиномиальном разложении регулятор записываем в виде левого полиномиального разложения:

\[
W_r(s) = Y_l^{-1}(s)X_l(s).
\]  
(10)

**Характеристическая матрица системы** может быть записана следующим образом:

\[
\begin{pmatrix}
Y_l(s) & X_l(s)
\end{pmatrix} = \begin{pmatrix}
\frac{D_1(s)}{N_r(s)}
\end{pmatrix} = C(s).
\]  
(11)

Учитем размеры матрицы \( Y_l(s), X_l(s) \) и \( C(s) \):

\[
Y_l(s) = \begin{pmatrix} y_{11}(s) & y_{12}(s) \\ y_{21}(s) & y_{22}(s) \end{pmatrix},
X_l(s) = \begin{pmatrix} x_{11}(s) & x_{12}(s) \\ x_{21}(s) & x_{22}(s) \end{pmatrix},
C(s) = \begin{pmatrix} c_{11}(s) & c_{12}(s) \\ c_{21}(s) & c_{22}(s) \end{pmatrix}.
\]  
(12)

Из уравнения (2) несложно получить матрицы \( D_r(s) \) и \( N_r(s) \) в виде матричных полиномов:

\[
D_r(s) = D_1s + D_0, \quad N_r(s) = N_0.
\]  
(13)

Воспользуемся уравнением (2) и выпишем матрицы \( D_1, D_0 \) и \( N_0 \):

\[
D_1 = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},
D_0 = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix},
N_0 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.
\]  
(14)

Подставим матрицы \( D_r(s), N_r(s) \) и \( C(s) \) (12) в (11):

\[
\begin{pmatrix} y_{11}(s) & y_{12}(s) \\ y_{21}(s) & y_{22}(s) \end{pmatrix} = \begin{pmatrix} x_{11}(s) & x_{12}(s) \\ x_{21}(s) & x_{22}(s) \end{pmatrix}
\begin{pmatrix} s+1 & s-2 \\ s-2 & 2s+4 \\ -2 & 0 \\ 3 & 1 \end{pmatrix}.
\]  
(15)

Зададим степени матрицы \( Y_l(s) \) и \( X_l(s) \). С учетом того, что \( \deg c_{ij}(s) = 1 \), \( \deg y_{ij}(s) = \deg x_{ij}(s) = 0 \) для \( i, j \), выберем степень полиномов регулятора равными нулю. Здесь \( \deg() \) — обозначение степени соответствующего полинома. В развернутом виде \( Y_l(s) \) и \( X_l(s) \) следующие:

\[
Y_l(s) = Y_0 = \begin{pmatrix} x_{11}^0 & x_{12}^0 \\ x_{21}^0 & x_{22}^0 \end{pmatrix},
X_l(s) = X_0 = \begin{pmatrix} x_{11}^0 & x_{12}^0 \\ x_{21}^0 & x_{22}^0 \end{pmatrix}.
\]  
(16)

Зададим диагональный вид характеристической матрицы системы, в которой полюсы равны \( \{-1, -1\} \):

\[
C(s) = C_1s + C_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]  
(17)

Подставим уравнения (14), (16) и (17) в (11):

\[
Y_0(D_1s + D_0) + X_0 N_0 = C_1s + C_0.
\]  
(18)

Раскроем (18):

\[
Y_0 D_0 s + Y_0 D_0 + X_0 N_0 = C_1s + C_0.
\]  
(19)

Приравнив коэффициенты при \( s \) с одинаковыми степенями в левой и правой частях, получим систему линейных уравнений, которую можно записать:

\[
Y_0 D_1 = C_1,
Y_0 D_0 + X_0 N_0 = C_0.
\]  
(20)

(21)

Из уравнения (20) найдем \( Y_0 \), что возможно ввиду невырожденности \( D_1 \), и подставив в (21), что позволяет найти \( X_0 \):

\[
Y_0 = C_1 D_1^{-1},
X_0 = (C_0 - Y_0 D_0) N_0^{-1}.
\]  
(22)

Здесь предполагается, что \( \det(N_0) \neq 0 \). Эти вычисления легко выполняются в Matlab:

\[
Y_l(s) = Y_0 = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix},
X_l(s) = X_0 = \begin{pmatrix} -13,5 & 8 \\ 9 & -5 \end{pmatrix}.
\]  
(23)

Далее выполним проверку — а именно подставим вычисленные матрицы \( Y_l(s), X_l(s) \) (23) и \( D_r(s), N_r(s) \) из (2) в (11):

\[
Y_l(s) D_l(s) + X_l(s) N_l(s) = C(s).
\]  
(24)

После подстановки уравнения системы в левую часть предыдущего уравнения и вычислений получим:

\[
\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} s+1 & s-2 \\ s-2 & 2s+4 \end{pmatrix} + \begin{pmatrix} -13,5 & 8 \\ 9 & -5 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}
= \begin{pmatrix} s+1 & 0 \\ 0 & s+1 \end{pmatrix}.
\]  
(25)

Проверка показала, что характеристические полюсы системы равны \( \{-1, -1\} \), и очевидно, что задача
автономизации каналов, если учитывать только характеристическую матрицу, выполнена. Итак, перейдем к моделированию системы.

Примечание. Нельзя задавать полосу системы произвольно, например, если задать полосу системы равными \{-1, -2, -3, -4\}, то есть матрицу $C(s)$ задать вида

$$C(s) = \begin{pmatrix} s+1 & s+2 \\ s+3 & s+4 \end{pmatrix},$$

получим матрицы регулятора $Y_0$ и $X_0$ следующие:

$$Y_0 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad X_0 = \begin{pmatrix} -6 & 4 \\ -8 & 6 \end{pmatrix}.$$  

Как видим, с такими значениями матриц $Y_0$ и $X_0$ регулятор не реализуемый ввиду вырожденности $Y_0$, а $X_0$ вырождается из-за вырожденности $C_i$ (22).

Моделирование системы. Перепишем уравнение регулятора (10) в виде

$$Y_0u = X_0e,$$

где $e = v - y$. Отсюда

$$u = Y_0^{-1}X_0e.$$  

Здесь предполагаем, что $\det(Y_0) \neq 0$ (23). Соответствующая структурная схема изображена на рис.3. Очевидно, что передаточная функция регулятора соответствует одной числовой матрице. Если взять $Y_0 = I$, то получим ограничение на выбор $C(s)$, а именно, обязаны задать $C_i = D_i$ (20).

Рис. 3. Структурная схема регулятора в матричном виде

Структурная схема системы приведена на рис. 4, где первый блок соответствует регулятору $W_i(s)$, а второй блок – объекту $W_{oa}(s)$. На рис. 4 $v, e, u, y$ – векторы размерностью два. Структурная схема объекта в матричном виде приведена на рис. 2.

Рис. 4. Структурная схема системы регулирования

Переходные процессы в системе для случаев $v(t) = (1 \ 0)^T$ и $y(t) = (0 \ 1)^T$ приведены на рис. 5. Как видим, система устойчивая, время переходного процесса примерно 3–4 сек и перерегулирование отсутствует. Хотя $C(s)$ диагональная, система неавтономная, что вызвано нениагональностью матриц – числителей объекта $N_i(s) = N_0$ и регулятора $X_i(s) = X_0$.

Рис. 5. Переходный процесс системы, когда на входе $(1 \ 0)^T$ и $(0 \ 1)^T$

Рассмотрим более сложный случай, а именно, $\det(D_i) = 0$ и $\det(D_{oa}) \neq 0$.

Пример: невырожденный случай

$\det(D_{oa}) \neq 0$ и $\det(D_i) = 0$

Выбираем второй вариант параметров объекта

$$D_i(s) = \begin{pmatrix} 0,5s+1 & s-1 \\ s-2 & 2s+4 \end{pmatrix}, \quad N_i(s) = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}.$$  

Воспользуемся рис.1 и запишем выходной сигнал первого блока $z(s) = D_i^{-1}(s)u(s)$ и подставим значение полиномиальной матрицы $D_i(s)$:

$$z_i = \begin{pmatrix} 0,5s+1 & s-1 \\ s-2 & 2s+4 \end{pmatrix}^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}.$$  

Детерминант матрицы $D_i(s)$ равен $7s+2$, и, следовательно, можем вычислить вектор $z$:

$$D_i^{-1}(s) = \det(D_i(s)) \begin{pmatrix} 2s+4 & -s+1 \\ -s+2 & 0,5s+1 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & \frac{2s+4}{7s+2} & -s+1 \\ \frac{-s+2}{7s+2} & 0,5s+1 \end{pmatrix} =$$

$$= \begin{pmatrix} \frac{(2s+4)/7s+2}{(-s+1)/7s+2} \\ \frac{(-s+2)/7s+2}{(0,5s+1)/7s+2} \end{pmatrix}.$$  

Итак, получили

$$z_i = \begin{pmatrix} (2s+4)/7s+2 & (-s+1)/7s+2 \\ (-s+2)/7s+2 & (0,5s+1)/7s+2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix},$$  

или
Уравнение (27) запишем в матрично-полиномиальный вид

\[ Q(s)z(s) = \bar{D}(s)u(s). \]  

(28)

Воспользуемся уравнением (27) и «развернем» матрицы \( Q(s) \) и \( \bar{D}(s) \):

\[ Q(s) = Q_s + Q_0, \quad \bar{D}(s) = \bar{D}_s + \bar{D}_0. \]  

(29)

Тогда уравнение (28) принимает вид

\[ (Q_s + Q_0)z(s) = (\bar{D}_s + \bar{D}_0)u(s). \]  

(30)

По уравнениям (30) запишем реализацию \( z(s) \):

\[ z(s) = \Delta^{-1}(\bar{D}_su(s) + s^{-1}(-Q_0z(s) + \bar{D}_0u(s))). \]  

(31)

Запишем уравнение выхода объекта \( y(s) \), для чего воспользуемся рис. 1:

\[ y(s) = N_r(s)z(s) = N_r(s)\Delta^{-1}(\bar{D}_su(s) + s^{-1}(-Q_0z(s) + \bar{D}_0u(s))). \]  

(32)

Здесь

\[ Q_1 = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}, \quad Q_0 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \bar{D}_1 = \begin{pmatrix} 2 & -1 \\ -1 & 0.5 \end{pmatrix}, \quad \bar{D}_0 = \begin{pmatrix} 4 & 1 \\ 2 & 1 \end{pmatrix}, \quad N_r = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}. \]  

(33)

Уравнению (32) соответствует структурная схема, приведенная на рис. 6.

Рис. 6. Структурная схема объекта (32) в матричном виде

Здесь предполагается невырожденность \( Q_1 \).

Синтез регулятора. Для объекта рис. 6 рассмотрим задачу синтеза двухканального регулятора. Передаточная функция объекта в виде правого полиномиального разложения определяется по формуле (9) и регулятора – в виде левого полиномиального разложения (10).

Характеристическая матрица системы может быть записана в виде (11). Из уравнения (26) несложно выписать матрицы \( D_1(s) \) и \( N_r(s) \) в виде матричных полиномов

\[ D_1(s) = D_s + D_0, \quad N_r(s) = N_0. \]  

(34)

Воспользуемся уравнением (26) и запишем значения \( D_1, D_0 \) и \( N_0 \):

\[ D_1 = \begin{pmatrix} 0.5 & 1 \\ 1 & 2 \end{pmatrix}, \quad D_0 = \begin{pmatrix} 1 & -1 \\ -2 & 4 \end{pmatrix}, \quad N_0 = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}. \]  

(35)

Учитем размеры матриц \( Y_1(s) \), \( X_1(s) \) и \( C(s) \) из (12) и \( D_1(s) \) и \( N_r(s) \) из (35) и подставим в (11):

\[
\begin{pmatrix}
\begin{vmatrix} y_{11}(s) & y_{12}(s) \\ y_{21}(s) & y_{22}(s) \end{vmatrix}
\end{vmatrix}
- \begin{pmatrix}
\begin{vmatrix} x_{11}(s) & x_{12}(s) \\ x_{21}(s) & x_{22}(s) \end{vmatrix}
\end{vmatrix}
\begin{pmatrix}
\begin{vmatrix} 0.5s + 1 & s - 1 \\ 2s + 4 & 0 \end{vmatrix}
\end{vmatrix} = \begin{pmatrix}
\begin{vmatrix} c_{11}(s) & c_{12}(s) \\ c_{21}(s) & c_{22}(s) \end{vmatrix}
\end{vmatrix}.
\]

(36)

Зададим степень матриц \( Y_1(s) \) и \( X_1(s) \). Аналогично рассуждениям, приведенным выше степень регулятора выбираем на единицу меньше степени объекта, то есть полагаем \( \vartheta(c(s)) = 1, \vartheta(y_1(s)) = 0 \) и \( \vartheta(x_1(s)) = 0 \). Получим формулу (16). Характеристическая матрица системы

\[ C(s) = C_s + C_0 = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} s + \begin{pmatrix} c_{10} & c_{12} \\ c_{20} & c_{22} \end{pmatrix}. \]  

(37)

Подставим уравнения (35), (16) и (37) в (11)

\[ Y_6(D_s + D_0) + X_0N_0 = C_s + C_0. \]  

(38)

Раскроем формулу (38):

\[ Y_6D_s + Y_6D_0 + X_0N_0 = C_s + C_0. \]  

(39)

Приравнивая коэффициенты при \( s \) с одинаковыми степенями в левой и правой частях, получим систему линейных уравнений (39), которую можно записать:

\[ \begin{pmatrix} Y_6 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix}, \]

или

\[ J\mathcal{R} = \mathcal{N}. \]  

(40)

Здесь

\[ J = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 \end{pmatrix}, \quad \mathcal{R} = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}, \quad \mathcal{N} = \begin{pmatrix} c_{11} & c_{12} & c_{10} & c_{12} \\ c_{21} & c_{22} & c_{20} & c_{22} \end{pmatrix}. \]  

(41)
Таким образом, первая часть задачи решена, а именно, составили уравнение, описывающее систему «объект – регулятор» (41), где входящие в это уравнение матрицы \( J \), \( \mathcal{R} \) и \( \mathcal{S} \) приведены в (42). Эта система уравнений должна быть решена относительно неизвестных, входящих в \( J \). Однако, в данном случае, размер матрицы \( \mathcal{R} \) равен \( 4 \times 4 \) и ее ранг равен трем.

Решение системы (41) состоит из двух этапов: на первом этапе из матрицы \( \mathcal{R} \) («удаляем» линейно-зависимые строки и столбцы с целью приведения матрицы \( \mathcal{R} \) к невырожденному виду. Под словом «удаляем» подразумеваем выделение произведения соответствующих строк и столбца из матриц \( J \) и \( \mathcal{R} \) и перенос в правую часть. Это соответствует первому преобразованию дифференциального уравнения. Второе преобразование состоит в вычеркивании линейно-зависимых столбцов из матриц \( \mathcal{R} \) и соответствующих столбцов из \( \mathcal{S} \). Это позволит обратить преобразованную матрицу \( \mathcal{R} \) и получить решение в «усечённой» системе (41). При этом преобразование подлежат и матрицы \( J \) и \( \mathcal{R} \). На втором этапе необходимо вернуться к исходной системе (41), для чего восстанавливаем «выброшенные» строки и столбцы в преобразованных матрицах \( J \), \( \mathcal{R} \) и \( \mathcal{S} \).

Приведение системы (41) с матрицей \( \mathcal{R} \) к невырожденному виду (первый этап преобразований). В матрице \( \mathcal{R} \) найдем линейно-зависимые столбцы и строки. В нашем случае 1-й и 2-й столбцы матрицы \( \mathcal{R} \) линейно-зависимые, и строки с первой по четвертую линейно-зависимые. В уравнение (41) подставим значения матриц \( J \), \( \mathcal{R} \) и \( \mathcal{S} \) из (42):

\[
\begin{align*}
J &= \begin{pmatrix} y_{11}^0 & y_{12}^0 & x_{11}^0 & x_{12}^0 \\ y_{21}^0 & y_{22}^0 & x_{21}^0 & x_{22}^0 \end{pmatrix}, \\
\mathcal{R} &= \begin{pmatrix} 0,5 & 1 & 1 & -1 \\ 0 & 2 & -2 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & 1 \end{pmatrix}, \\
\mathcal{S} &= \begin{pmatrix} c_{11}^0 & c_{12}^0 & c_{11}^0 & c_{12}^0 \\ c_{21}^0 & c_{22}^0 & c_{21}^0 & c_{22}^0 \end{pmatrix}. \tag{43}
\end{align*}
\]

Вспомним, что вторая строка из матрицы \( \mathcal{R} \) линейно-зависимая и включает другим цветом вторую столбец матрицы \( J \) и вторую строку матрицы \( \mathcal{R} \):

\[
J \mathcal{R}_1 + (y_{12}^0, y_{22}^0) (1, 2, -2, 4) = \mathcal{S}.
\]

Переносим направо со знаком минус производение второго столбца матрицы \( J \) на вторую строку матрицы \( \mathcal{R} \). Это производение обозначим \( q \) и перенесем направо:

\[
J_1 \mathcal{R}_1 = \mathcal{S} - q. \tag{44}
\]

Правую часть уравнения обозначим через \( Q \):

\[
J_1 \mathcal{R}_1 = Q. \tag{44}
\]

Итак, получим

\[
\begin{pmatrix}
0,5 & 1 & 1 & -1 \\
0 & 2 & -2 & 4 \\
0 & 0 & 2 & 0 \\
0 & 0 & 3 & 1
\end{pmatrix}
= \begin{pmatrix}
c_{11}^0 & c_{12}^0 & c_{11}^0 & c_{12}^0 \\
c_{21}^0 & c_{22}^0 & c_{21}^0 & c_{22}^0
\end{pmatrix},
\]

\[
= \begin{pmatrix}
c_{11}^0 - 2y_{12}^0 & c_{12}^0 + 2y_{12}^0 & c_{11}^0 - 4y_{12}^0 \\
c_{21}^0 - 2y_{22}^0 & c_{22}^0 + 2y_{22}^0 & c_{21}^0 - 4y_{22}^0
\end{pmatrix}. \tag{45}
\]

Для того чтобы матрица \( \mathcal{R}_1 \) была квадратной, следует выбрать линейно-зависимый присоеединить матрицу \( \mathcal{R}_1 \) через \( \mathcal{R}_2 \). Кроме того, следует выбрать первый столбец матрицы \( Q \) – пометим этот столбец также другим цветом. После удаления первого столбца из \( Q \) обозначим ее \( Q_1 \). Тогда уравнение (45) после удаления выделенных столбцов принимает вид

\[
\begin{pmatrix}
0,5 & 1 & 1 & -1 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 1
\end{pmatrix}
= \begin{pmatrix}
c_{11}^0 - 2y_{12}^0 & c_{12}^0 + 2y_{12}^0 & c_{11}^0 - 4y_{12}^0 \\
c_{21}^0 - 2y_{22}^0 & c_{22}^0 + 2y_{22}^0 & c_{21}^0 - 4y_{22}^0
\end{pmatrix}.
\]

Или кратко можем записать предыдущее уравнение так:

\[
J_1 \mathcal{R}_2 = Q_1. \tag{46}
\]

Сейчас матрица \( \mathcal{R}_2 \) невырожденная и, следовательно, можем найти параметры регулятора, вводящие в \( J_1 \):

\[
J_1 = Q_1 \mathcal{R}_2^{-1}.
\]

Вычислим правую часть предыдущего уравнения, для чего можем воспользоваться символными вычислениями в пакете Matlab. В результате получим:

\[
J_1 = \begin{pmatrix}
c_{11}^0 - 2y_{12}^0 & 0,5c_{11}^0 - 1,5c_{12}^0 - 2e_{11}^0 + 11y_{12}^0 \\
c_{21}^0 - 2y_{22}^0 & 0,5c_{21}^0 - 1,5c_{22}^0 - 2e_{21}^0 + 11y_{22}^0 \\
c_{11}^0 + e_{11}^0 - 6y_{12}^0 & c_{21}^0 + e_{21}^0 - 6y_{22}^0
\end{pmatrix}.
\]
Ряд неизвестных параметров регулятора, входящих в $J_1$, найдены. Оказалось, что они зависят от элементов характеристической матрицы $\mathcal{N}$. Кроме того, в правую часть вошли два параметра регулятора $y_{10}$ и $y_{20}$. Мы выполнили первый этап преобразования диффузионного уравнения.

Сейчас приступим к выполнению второго этапа преобразований диффузионного уравнения, а именно следует возвратиться к исходному уравнению (41), или в развернутом виде (40). Для этого перейдем от $\mathcal{R}_2$ к $\mathcal{R}_1$ и от $Q_2$ к $Q_1$, для чего вспомним первый выбросный столбик матрицы $\mathcal{R}_1$ и первый выброшенный столбик матрицы $Q$. В результате получим уравнение с входящими в него матрицами $\mathcal{R}_1$ и $Q$:

$$
\begin{bmatrix}
  c_{1_{12} - 2y_{1_{12}}} & 0.5c_{11_{12}} - 1.5c_{12_{12}} - 2c_{12_{12}} + 11y_{12} \\
  c_{2_{22} - 2y_{2_{22}}} & 0.5c_{21_{12}} - 1.5c_{22_{22}} - 2c_{22_{22}} + 11y_{22}
\end{bmatrix}
+ \begin{bmatrix}
  e_{1} + c_{1_{22} - 6y_{12}} \\
  e_{2} + c_{2_{22} - 6y_{22}}
\end{bmatrix}
= \begin{bmatrix}
  0.5 & 1 & 1 & -1 \\
  0 & 0 & 2 & 0
\end{bmatrix}
\begin{bmatrix}
  0 & 0 & 3 & 1
\end{bmatrix},
$$

что для того чтобы вернуться от $J_1$ к $J$ и от $\mathcal{R}_1$ к $\mathcal{R}$ в матрице $\mathcal{R}_1$, следует добавить вторую строку и в матрице $J_1$ добавить второй столбец, которые пометим для удобства другим цветом. Эти «элементы» необходимо забрать из матрицы $Q$:

$$
\begin{bmatrix}
  c_{1_{11} - 2y_{1_{12}}} & y_{1_{12}} \\
  c_{2_{22} - 2y_{2_{22}}} & y_{2_{22}}
\end{bmatrix}
+ \begin{bmatrix}
  e_{1} + c_{1_{22} - 6y_{12}} \\
  e_{2} + c_{2_{22} - 6y_{22}}
\end{bmatrix}
= \begin{bmatrix}
  0.5 & 1 & 1 & -1 \\
  0 & 0 & 2 & 0
\end{bmatrix}
\begin{bmatrix}
  0 & 0 & 3 & 1
\end{bmatrix},
$$

Выполним умножение матрицы $J$ на $\mathcal{R}$:

$$
\begin{bmatrix}
  (c_{11} - 2c_{12}) & y_{12} \\
  (c_{22} - 2c_{22}) & y_{22}
\end{bmatrix}
+ \begin{bmatrix}
  e_{1} + c_{1_{22} - 6y_{12}} \\
  e_{2} + c_{2_{22} - 6y_{22}}
\end{bmatrix}
= \begin{bmatrix}
  0.5 & 1 & 1 & -1 \\
  0 & 0 & 2 & 0
\end{bmatrix}
\begin{bmatrix}
  0 & 0 & 3 & 1
\end{bmatrix}.
$$

Для выполнения равенства необходимо, чтобы совпадали соответствующие элементы левой и правой матриц. Элементы вторых блоков левой и правой матриц совпадают. Для выполнения равенства в (47) необходимо и достаточно выполнить два условия:

$$
\begin{bmatrix}
  (c_{11} - 2c_{12}) & y_{12} \\
  (c_{22} - 2c_{22}) & y_{22}
\end{bmatrix}
+ \begin{bmatrix}
  e_{1} + c_{1_{22} - 6y_{12}} \\
  e_{2} + c_{2_{22} - 6y_{22}}
\end{bmatrix}
= \begin{bmatrix}
  0.5 & 1 & 1 & -1 \\
  0 & 0 & 2 & 0
\end{bmatrix}
\begin{bmatrix}
  0 & 0 & 3 & 1
\end{bmatrix}.
$$

Запись выше приведенных формул предполагает, что $c_{1}$ и $c_{2}$ являются функциями $c_{12}$ и $c_{22}$ соответственно. Тогда характеристическая матрица системы может быть записана следующим образом:

$$
\begin{bmatrix}
  C_1 & C_0
\end{bmatrix} = \begin{bmatrix}
  (c_{11} - 2c_{12}) & y_{12} \\
  (c_{22} - 2c_{22}) & y_{22}
\end{bmatrix}
+ \begin{bmatrix}
  e_{1} + c_{1_{22} - 6y_{12}} \\
  e_{2} + c_{2_{22} - 6y_{22}}
\end{bmatrix}.
$$

Таким образом, как следует из предыдущей формулы, не все характеристические матрицы системы могут быть заданы.

Вспомним, что $J$ определяет параметры регулятора:

$$
\begin{bmatrix}
  y_0 & x_0
\end{bmatrix} = \begin{bmatrix}
  (c_{11} - 2c_{12}) & y_{12} \\
  (c_{22} - 2c_{22}) & y_{22}
\end{bmatrix}
+ \begin{bmatrix}
  e_{1} + c_{1_{22} - 6y_{12}} \\
  e_{2} + c_{2_{22} - 6y_{22}}
\end{bmatrix}.
$$

В формулу регулятора вошли параметры характеристической матрицы $c^k$ (шестер параметров) и еще два параметра $y_{12}$, $y_{22}$, которые можно задавать произвольно.

Пример задания характеристической матрицы системы. Выпишем характеристическую матрицу (48) в полиномиальном виде:

$$
C(s) = \frac{c_{11}s + e_{11}}{2} + \frac{c_{12}s + e_{12}}{12}.
$$

Например, зададим следующие параметры характеристической матрицы с учетом ограничений, приведенных в (49), то есть задаем $c_{11} = e_{11} = 0$, $c_{12} = e_{12} = c_{21} = 0$, $c_{22} = 1$ и $c_{12} = c_{12} = 2$, тогда можем записать характеристическую матрицу системы в полиномиальном виде.
Получили по контурам характеристические полиномы \( s+1 \) и \( 2s+1 \), а перекрестные связи между контурами \(-s+2s\), что соответствует дифференцированию. В установившемся режиме достигнута автономизация контуров, если анализировать только \( C(s) \). Но полиномиальные матрицы \( N(s) \) и \( X(s) \) нарушают автономизацию. Тогда

\[
(Y_0 \ X_0) = \begin{pmatrix}
2 - 2y_{12}^0 & y_{12}^0 & 11y_{12}^0 - 3.5 & 2 - 6y_{12}^0 \\
2 - 2y_{22}^0 & y_{22}^0 & 11y_{22}^0 - 5.5 & 2 - 6y_{22}^0
\end{pmatrix}
\]

Следует отметить, что если \( y_{12}^0 \) и \( y_{22}^0 \) выберем равными нулю, получим следующие значения параметров регулятора:

\[
(Y_0 \ X_0) = \begin{pmatrix}
2 & 0 & -3.5 & 2 \\
2 & 0 & -5.5 & 3
\end{pmatrix}
\]

Как оказалось, матрица \( Y_0 \) выродилась. Другими словами, не все значения «свободных» параметров \( y_{12}^0 \) и \( y_{22}^0 \) можно задавать. Вычислим

\[
W_{min}(s) = N(s)C^{-1}(s)X(s) =
\begin{pmatrix}
2 & 0 & -3.5 & 2 \\
3 & 1 & -5.5 & 3
\end{pmatrix}^{-1}
\begin{pmatrix}
s + 1 & 2s \\
2s + 1 & s
\end{pmatrix}
\]

В установившемся режиме передаточная функция замкнутой системы равна

\[
W_{min}(s)_{s=0} = \begin{pmatrix}
2 & 0 & -3.5 & 2 \\
3 & 1 & -5.5 & 3
\end{pmatrix}^{-1}
\begin{pmatrix}
1 & 0 & -3.5 & 2 \\
0 & 1 & -5.5 & 3
\end{pmatrix}
\]

Таким образом, статический режим неудовлетворительный. Для получения качественного статического режима необходимо в регулятор ввести интеграторы, либо соответствующим образом увеличить коэффициенты усиления по контурам. Более универсальный подход состоит в использовании так называемых двухпараметрических регуляторов [6].

**Первый вариант регулятора: выраженный случай.** Можем взять, в частности, \( y_{12}^0 \) и \( y_{22}^0 \) равными нулю:

\[
J = \begin{pmatrix}
c_{12}^0 & 0 & 0.5c_{11}^0 - 1.5c_{22}^0 - 2c_{12}^1 & c_{12}^1 + c_{12}^0 \\
c_{22}^0 & 0 & 0.5c_{12}^0 - 1.5c_{22}^0 - 2c_{22}^1 & c_{22}^1 + c_{22}^0
\end{pmatrix}
\]

Легко сделать проверку: если подставим (49) в (41) и выполним умножение \( JX \), получим уравнение (48), что подтверждает справедливость сделанных утверждений.

**Второй вариант регулятора: невыраженный случай.** Можем сделать дополнительную проверку справедливости вышеприведенных формул для более общего случая, а именно, если выберем \( c_{12}^0 = c_{12}^0 = 0 \) и \( c_{11}^0 = c_{22}^0 = c_{12}^1 = c_{22}^1 = 1 \), тогда получим:

\[
c_{12}^1 = 2c_{12}^1 = 2, c_{22}^1 = (c_{22}^1) / 2 = 0.5.
\]

Характеристическая матрица может быть получена из (49):

\[
C(s) = \begin{pmatrix}
s + 1 & 2s \\
0.5s & s + 1
\end{pmatrix}
\]

Подставим значения \( c_{12}^0 \) и \( c_{22}^1 \) в уравнение \( J \) и получим параметры регулятора, которые зависят от \( y_{12}^0 \) и \( y_{22}^0 \):

\[
J = \begin{pmatrix}
1,333 & 0.333 & 0.167 & 0 \\
0.364 & 0.318 & 0 & 0.1
\end{pmatrix}
\]

и определитель «знаменателя» регулятора не равен нулю:

\[
\text{det}(Y_0) = 2y_{22}^0 - y_{12}^0
\]

Параметр \( y_{12}^0 \) нельзя брать равным 2 \( y_{22}^0 \), иначе \( \text{det}(Y_0) = 0 \). Вычислим определитель \( X_0 \):

\[
\text{det}(X_0) = 22y_{12}^0 - 22y_{22}^0 + 21y_{12}^0 - 21y_{12}^0
\]

Нельзя брать параметры \( y_{12}^0 \) и \( y_{22}^0 \) равными, иначе \( \text{det}(X_0) = 0 \). Если положить \( y_{12}^0 = 0 \) и \( y_{22}^0 = 0 \), то получим выраженные матрицы \( Y_0 \) и \( X_0 \). Пусть \( y_{12}^0 = 0 \) и \( y_{22}^0 = 0.5 \), тогда

\[
J = \begin{pmatrix}
2 & 0 & -3.5 & 2 \\
0 & 0.5 & 2 & -1
\end{pmatrix}
\]

Проверяем передаточную функцию замкнутой системы с такими параметрами для \( t \to \infty \). Для этого в начале найдем передаточную функцию замкнутой системы:

\[
W_{min}(s) = N(s)(Y(s)D(s) + X(s)N(s))^{-1}X(s) =
N(s)C^{-1}(s)X(s)
\]
Информатика, вычислительная техника и управление


\[ \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} s + 1 & 2s \\ 0,5s & s + 1 \end{pmatrix}^{-1} \begin{pmatrix} -3,5 & 2 \\ 2 & -1 \end{pmatrix} = . \]

\[ \begin{pmatrix} (s + 7) & 4 \\ (7s + 34) & (8s + 4) \end{pmatrix} \]

Отсюда

\[ W_{z_{am}}(s = \infty) = \begin{pmatrix} -7,5 & 4 \\ -9,375 & 5 \end{pmatrix}, \]

\[ W_{z_{am}}(s = 0) = \begin{pmatrix} -7 & 4 \\ -8,5 & 5 \end{pmatrix}. \]

В этом случае статический режим не выраженый, но установившийся режим не удовлетворительный. После того как нашли параметры регулятора, перейдем к моделированию системы.

**Моделирование системы.** Для реализации регулятора запишем уравнение в виде

\[ Y_{q} = X_{q} e, \]

или

\[ \begin{pmatrix} 2 & 0 \\ 0,5 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -3,5 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}. \]

Найдем уравнение, связывающее вход и выход регулятора:

\[ \begin{align*}
2u_1 &= -3,5e_1 + 2e_2 \\
0,5u_2 &= 2e_1 - e_2
\end{align*} \]

или

\[ \begin{align*}
u_1 &= -1,75e_1 + e_2 \\
u_2 &= 4e_1 - 2e_2 \tag{53}
\end{align*} \]

В матричном виде это соответствует

\[ u(s) = R_u e(s) = \begin{pmatrix} -1,75 & 1 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} e_1(s) \\ e_2(s) \end{pmatrix}. \]

Уравнению (53) соответствует структура, приведенная на рис. 7.

Рис. 7. Структурная схема регулятора в матричном виде для невырожденного случая

Структурная схема системы приведена на рис. 4, где первый блок соответствует регулятору \( W(s) \) (рис. 7) и второй блок – объекту \( W_{ob}(s) \). Структурная схема объекта в скалярном виде приведена на рис. 6.

Переходные процессы в системе для случаев \( v(t) = (1 \ 0)^T \) и \( y(t) = (0 \ 1)^T \) приведены на рис. 8. Как видим, система устойчивая, время переходного процесса примерно 4 сек, перерегулирование отсутствует. С учетом того, что характеристическая матрица системы имеет устойчивые «элементы» и имеются перекрестные положительные связи и, кроме того, система статическая, можно объяснить характер процессов. Установившиеся значения вычисляются по формуле \( W_{z_{am}}(s = 0) \) и начальные значения – \( W_{z_{am}}(s \rightarrow \infty) \).

Интересно отметить, что по второму каналу система статическая, что легко объяснить из анализа передаточной функции замкнутой системы (52). И, наконец, перейдем к вырожденному случаю.

**Пример – вырожденный случай:**

\[ \det(D_0) = 0 \quad \text{и} \quad \det(D_1) = 0 \]

Рассмотрим значения параметров объекта, соответствующие вырожденному случаю

\[ D_0(s) = \begin{pmatrix} 0,5s + 1 & s - 2 \\ s - 2 & 2s + 4 \end{pmatrix} \quad \text{и} \quad N_0(s) = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \tag{54} \]

Уравнение объекта по входу и выходу запишется так:

\[ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0,5s + 1 & s - 2 \\ s - 2 & 2s + 4 \end{pmatrix}^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \tag{55} \]

Воспользуемся рис. 1 и формулой (5):
\[ \begin{pmatrix} 0.5s + 1 \\ s - 2 \\ s - 2 \\ 2s + 4 \end{pmatrix} z = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \]

Детерминант матрицы \( D_j(s) \) равен 8s, следовательно, можем вычислить вектор \( z \):

\[ D_j^{-1}(s) = \text{det}^{-1}(D_j(s)) = \begin{pmatrix} 2s + 4 & -s + 2 \\ -s + 2 & 8s + 1 \end{pmatrix} = \frac{1}{8s} \begin{pmatrix} 2s + 4 & -s + 2 \\ -s + 2 & 8s + 1 \end{pmatrix} = \begin{pmatrix} (s + 2)/4 & -(s + 2)/8s \\ -(s + 2)/8s & (s + 2)/16s \end{pmatrix} = \begin{pmatrix} 1/4s & 1/4 - 1/8 \\ 1/4s & 1/8s \end{pmatrix} = \begin{pmatrix} 0.5 & 0.25 \frac{1}{s} \\ 0.25 & 0.125 \frac{1}{s} \end{pmatrix} + \begin{pmatrix} 0.25 & -0.125 \\ -0.125 & 0.0625 \end{pmatrix} = O_{s^{-1}} + O_0. \] (56)

Таким образом, \( z(s) = (O_{s^{-1}} + O_0) u(s) \). Далее вычислим передаточную функцию объекта, а именно, вспомним связь между \( y(s) \) и \( z(s) \):

\[ y(s) = N_j(s) z(s) = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} z(s) = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \left( O_{s^{-1}} + O_0 \right) u(s) = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0.5 & 0.25 \frac{1}{s} \\ 0.25 & 0.125 \frac{1}{s} \end{pmatrix} \begin{pmatrix} u_1(s) \\ u_2(s) \end{pmatrix} + \begin{pmatrix} 0.25 & -0.125 \\ -0.125 & 0.0625 \end{pmatrix} \begin{pmatrix} u_1(s) \\ u_2(s) \end{pmatrix} = \begin{pmatrix} 1 & 0.5 \frac{1}{s} \\ 1.75 & 0.875 \frac{1}{s} \end{pmatrix} \begin{pmatrix} 0.5 & -0.25 \\ 0.625 & -0.3125 \end{pmatrix} \begin{pmatrix} u_1(s) \\ u_2(s) \end{pmatrix} = \left( O_{s^{-1}} + O_0 \right) u(s). \] (57)

Объект представляет собой двухканальную ПИ-звено, вырожденность матрицы \( \bar{O}_1 \) и \( \bar{O}_0 \) не влияет на работоспособность модели и, соответственно, объекта. В общем случае \( \text{det} \bar{O}_1 \neq 0 \) и \( \text{det} \bar{O}_0 \neq 0 \) и система управления данным объектом, например, обеспечение заданных полос по первому и второму контурам, легко реализуется.

**Синтез регулятора.** Рассматриваем задачу синтеза двухканальных систем для вырожденного случая. Передаточная функция объекта в виде правого полиномиального разложения определяется по формуле (9). Регулятор запишем в виде левого полиномиального разложения (10).

**Характеристическая матрица системы** записывается в виде (11). Из уравнения (54) несложно выписать матрицы \( D_j(s) \) и \( N_j(s) \) в виде матричных полиномов

\[ D_j(s) = D_j + D_0, \quad N_j(s) = N_0. \] (58)

Воспользуемся уравнением (54) и выпишем значения \( D_1, D_0 \) и \( N_0 \):

\[ D_1 = \begin{pmatrix} 0.5 & 1 \\ 1 & 2 \end{pmatrix}, \quad D_0 = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}, \quad N_0 = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}. \] (59)

Учитем размеры матриц \( Y_j(s) \), \( X_j(s) \) и \( C(s) \) из (12) и подставим значения матриц \( D_j(s) \) и \( N_j(s) \) в характеристическую матрицу (11):

\[ \begin{pmatrix} y_1(s) & y_2(s) \\ y_3(s) & y_4(s) \end{pmatrix} = \begin{pmatrix} 0.5s + 1 & s - 2 \\ 2s + 4 & 8s + 1 \end{pmatrix} = \begin{pmatrix} c_{11}(s) & c_{12}(s) \\ c_{21}(s) & c_{22}(s) \end{pmatrix}. \] (60)

Зададим степени матриц \( Y_j(s) \) и \( X_j(s) \) на единицу меньше степени объекта. Пусть \( \partial(c_i(s)) = 1 \), \( \partial(y_{ij}(s)) = 0 \) и \( \partial(x_{ij}(s)) = 0 \). Характеристическая матрица системы имеет вид (37). Подставим уравнения (59), (16) и (17) в (11) и раскроем

\[ Y_0D_1 + Y_0D_0 + X_0N_0 = C_1s + C_0. \] (61)

Приравниваем коэффициенты при \( s \) с одинаковыми степенями в левой и правой частях (61). Получим систему линейных уравнений, которую можно записать также в виде (40) или в свёрнутом виде (41). Здесь

\[ J = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{bmatrix} f_0 & f_1 \\ g_0 & g_1 \end{bmatrix}, \]

\[ N = \begin{bmatrix} C_1 & C_0 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}. \] (62)

Таким образом, первая часть задачи решена, а именно, составили уравнение, описывающее систему «объект — регулятор» (41), где входящие в
это уравнение матрицы $J$, $\mathcal{R}$ и $\mathcal{N}$ приведены в (62). Эта система уравнений должна быть решена относительно неизвестных, входящих в $J$. Однаково в данном случае размер матрицы $\mathcal{R}$ равен $4 \times 4$ и ее ранг равен трех.

Далее следует приступить к решению перепределенной системы уравнений.

**Приведение системы уравнений с матрицей $\mathcal{R}$ к невырожденному виду (первый этап преобразований).** В матрице $\mathcal{R}$ найдем линейно-зависимые столбцы и строки. В нашем случае 1-й и 2-й столбцы матрицы $\mathcal{R}$ линейно-зависимые и, кроме того, строки с первой по четвертую линейно-зависимые. В уравнение (41) подставим матрицы $J$, $\mathcal{R}$ и $\mathcal{N}$ из (62):

\[
\begin{pmatrix}
     y_{11}^0 & y_{12}^0 & x_{11}^0 & x_{12}^0 \\
     y_{21}^0 & y_{22}^0 & x_{21}^0 & x_{22}^0 \\
\end{pmatrix}
\begin{pmatrix}
     0.5 & 1 & 1 & -2 \\
     1 & 2 & -2 & 4 \\
     0 & 0 & 2 & 0 \\
     0 & 0 & 3 & 1 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
     c_{11}^1 & c_{12}^1 & c_{11}^0 & c_{12}^0 \\
     c_{21}^1 & c_{22}^1 & c_{21}^0 & c_{22}^0 \\
\end{pmatrix}
\]

(63)

Отметим, что вторая строка из матрицы $\mathcal{R}$ линейно-зависимая. Выделим другим цветом второй столбец матрицы $J$ и вторую строку матрицы $\mathcal{R}$ и преобразуем уравнение (63):

\[
J_1\mathcal{R}_1 + \frac{(y_{12}^0 y_{22}^0)(1 - 2 - 4)}{Q} = \mathcal{N}.
\]

Перенесем напротив со знаком минус произведение второго столбца матрицы $J$ на вторую строку матрицы $\mathcal{R}$:

\[
J_1\mathcal{R}_1 = \mathcal{N} - \frac{Q}{Q}.
\]

Правую часть уравнения обозначим через $Q$:

\[
J_1\mathcal{R}_1 = Q.
\]

Итак, получили

\[
\begin{pmatrix}
     y_{11}^0 & x_{11}^0 & x_{12}^0 \\
     y_{21}^0 & x_{21}^0 & x_{22}^0 \\
\end{pmatrix}
\begin{pmatrix}
     0.5 & 1 & 1 & -2 \\
     0 & 0 & 2 & 0 \\
     0 & 0 & 3 & 1 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
     c_{11}^1 - y_{11}^0 & c_{12}^1 - 2y_{12}^0 & c_{11}^0 + 2y_{12}^0 & c_{12}^0 - 4y_{12}^0 \\
     c_{21}^1 - y_{21}^0 & c_{22}^1 - 2y_{22}^0 & c_{21}^0 + 2y_{22}^0 & c_{22}^0 - 4y_{22}^0 \\
\end{pmatrix}
\]

(65)

Следует выбросить линейно-зависимый первый столбец – пометим его другим цветом и обозначим преобразованную матрицу $\mathcal{R}_1$ через $\mathcal{R}_2$. Кроме того, следует выбросить первый столбец матрицы $Q$ – пометим это столбец также другим цветом. После удаления первого столбца из матрицы $Q$ обозначим ее $Q_1$. Тогда уравнение (65) после удаления выделенных столбцов принимает вид

\[
\begin{pmatrix}
     y_{11}^0 & y_{12}^0 & x_{11}^0 & x_{12}^0 \\
     y_{21}^0 & y_{22}^0 & x_{21}^0 & x_{22}^0 \\
\end{pmatrix}
\begin{pmatrix}
     1 & 1 & -2 \\
     0 & 2 & 0 \\
     0 & 3 & 1 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
     c_{11}^1 - 2y_{11}^0 & c_{12}^1 + 2y_{12}^0 & c_{11}^0 - 4y_{12}^0 \\
     c_{21}^1 - 2y_{21}^0 & c_{22}^1 + 2y_{22}^0 & c_{21}^0 - 4y_{22}^0 \\
\end{pmatrix}
\]

Кратко можем записать предыдущее уравнение в виде (46). Сейчас матрица $\mathcal{R}_2$ невырожденная и, следовательно, можем найти параметры регулятора, входящие в $J_1$:

\[
J_1 = Q\mathcal{R}_2^{-1}.
\]

В результате получим:

\[
\begin{pmatrix}
     y_{11}^0 & x_{11}^0 & x_{12}^0 \\
     y_{21}^0 & x_{21}^0 & x_{22}^0 \\
\end{pmatrix}
\begin{pmatrix}
     0.5 & 1 & 1 & -2 \\
     0 & 0 & 2 & 0 \\
     0 & 0 & 3 & 1 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
     c_{11}^1 - 2y_{11}^0 & c_{12}^1 - 1.5c_{12}^0 - 3.5c_{11}^0 + 14y_{12}^0 \\
     c_{21}^1 - 2y_{21}^0 & c_{22}^1 - 1.5c_{22}^0 - 3.5c_{21}^0 + 14y_{22}^0 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
     c_{11}^0 + 2e_{11}^1 - 8y_{12}^0 \\
     c_{21}^0 + 2e_{21}^1 - 8y_{22}^0 \\
\end{pmatrix}
\]

Неизвестные параметры регулятора, входящие в $J_1$, зависят от элементов характеристической матрицы $\mathcal{N}$. Кроме того, в правую часть вошли два параметра регулятора $y_{12}^0$ и $y_{22}^0$. Первый этап преобразований диофантового уравнения выполнен.

Для выполнения второго этапа преобразований диофантового уравнения, следует вернуться к исходной переопределенной системе уравнений. Восстановим выбранные столбцы в матрицах $\mathcal{R}_1$ и $Q$:

\[
\begin{pmatrix}
     c_{11}^1 - y_{11}^0 & c_{12}^1 - 2y_{12}^0 & c_{11}^0 + 2y_{12}^0 & c_{12}^0 - 4y_{12}^0 \\
     c_{21}^1 - y_{21}^0 & c_{22}^1 - 2y_{22}^0 & c_{21}^0 + 2y_{22}^0 & c_{22}^0 - 4y_{22}^0 \\
\end{pmatrix}
\]

(65)
Добавим в матрицу \( J \) второй столбик и в матрицу \( \mathcal{Y} \) вторую строку, которые пометим другим цветом. Это соответствует исключению \( y_{12}^0 \) и \( y_{22}^0 \) из матрицы \( Q \):

\[
Q = \begin{pmatrix}
    c_1^1 - 2y_{12}^0 & y_{12}^0 \\
    c_1^2 - 2y_{22}^0 & y_{22}^0 \\
    0,5c_e^{11} - 1,5c_e^{12} - 3,5c_e^{13} + 14y_{12}^0 \\
    0,5c_e^{11} - 1,5c_e^{12} - 3,5c_e^{13} + 14y_{22}^0
\end{pmatrix}
\]

\[
\begin{pmatrix}
    y_1^{12} \\
    y_1^{22} \\
    0,5c_e^{11} + 2c_e^{12} - 8y_{12}^0 \\
    0,5c_e^{11} + 2c_e^{12} - 8y_{22}^0
\end{pmatrix}
\]

В результате умножения матриц \( J \) и \( \mathcal{Y} \) получим (47). Необходимо выполнение двух условий:

\[
(c_{12}^0) / 2 = c_{11}^1, \quad (c_{22}^0) / 2 = c_{12}^1.
\]

Характеристическая матрица системы может быть записана в виде (48).

Могут быть вычислены параметры регулятора:

\[
\begin{pmatrix}
    Y_0 \\
    X_0
\end{pmatrix} = \begin{pmatrix}
    e_1^1 - 2y_{12}^0 & y_{12}^0 \\
    e_1^2 - 2y_{22}^0 & y_{22}^0 \\
    0,5c_e^{11} - 1,5c_e^{12} - 3,5c_e^{13} + 14y_{12}^0 & c_e^0 + 2c_e^{12} - 8y_{12}^0 \\
    0,5c_e^{11} - 1,5c_e^{12} - 3,5c_e^{13} + 14y_{22}^0 & c_e^0 + 2c_e^{12} - 8y_{22}^0
\end{pmatrix}
\]

Как видим, параметры регулятора зависят от коэффициентов характеристической матрицы \( c_e^0 \) (шесть параметров) и еще двух параметров \( y_{12}^0 \), \( y_{22}^0 \), которые можно задавать произвольно.

Пример задания характеристической матрицы системы. Выпишем характеристическую матрицу (47) в полиноминальном виде (49). Например, зададим следующие параметры характеристической матрицы с учетом ограничений, принадлежных в (49), то есть задаем, например, \( c_{12}^0 = c_{21}^0 = 0 \), \( c_{11}^0 = c_{22}^0 = 1 \) и \( c_{12}^1 = c_{21}^1 = 2 \). В результате характеристическая матрица системы в полиноминальном виде может быть записана так:

\[
C(s) = \begin{pmatrix}
    s + 1 & 2s \\
    s & 2s + 1
\end{pmatrix}
\]

Получили по первому и второму контурам характеристические полиномы \( s + 1 \) и \( 2s + 1 \), а перекрестные связи между контурами – \( s \) и \( 2s \), что соответствует дифференцированию. В установившемся режиме достигнута автономизация контуров, если только анализировать \( C(s) \). Но полиноминальные матрицы \( N(s) \) и \( X(s) \) нарушают автономизацию:

\[
W_{xam}(s) = N(s)C^{-1}(s)X(s) =
\begin{pmatrix}
    2 & 0 \\
    3 & 1
\end{pmatrix}
\begin{pmatrix}
    s + 1 & 2s \\
    s & 2s + 1
\end{pmatrix}^{-1}
\begin{pmatrix}
    -6,5 & 4 \\
    -5,5 & 5
\end{pmatrix}.
\]

В установившемся режиме передаточная функция замкнутой системы равна

\[
W_{xam}(s = 0) = \begin{pmatrix}
    2 & 0 \\
    3 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
    -6,5 & 4 \\
    -5,5 & 5
\end{pmatrix} =
\begin{pmatrix}
    2 & 0 \\
    3 & 1
\end{pmatrix}
\begin{pmatrix}
    -13 & 8 \\
    -25 & 17
\end{pmatrix}.
\]

Так как не диагональные элементы не нулевые, в системе присутствует в установившемся режиме влияние перекрестных связей.

Первый вариант регулятора: выраженный случай. Можем взять, в частности, \( y_{12}^0 \) и \( y_{22}^0 \) равными нулю:

\[
J = \begin{pmatrix}
    e_1^1 & 0 \\
    e_1^2 & 0 \\
    0,5c_e^{11} - 1,5c_e^{12} - 3,5c_e^{13} + 14y_{12}^0 & c_e^0 + 2c_e^{12} - 8y_{12}^0 \\
    0,5c_e^{11} - 1,5c_e^{12} - 3,5c_e^{13} + 14y_{22}^0 & c_e^0 + 2c_e^{12} - 8y_{22}^0
\end{pmatrix}.
\]

Легко сделать проверку, что если подставим (49) в (41) и выполним умножение \( J \cdot \mathcal{Y} \), получим уравнение (48), что подтверждает справедливость сделанных утверждений. Особенностью данного варианта является выражаемость матрицы \( Y_0 \), что, в частности, не позволит реализовать матричную модель регулятора.

Второй вариант регулятора: невыраженный случай. Можем сделать дополнительную проверку справедливости вышеприведенных формул для более общего случая, а именно

\[
c_{12}^0 = c_{21}^0 = 0 \quad \text{и} \quad c_{11}^0 = c_{22}^0 = 1 = c_{12}^1 = c_{21}^1 = 1 \quad \text{тогда}
\]

\[
c_{12}^1 = c_{21}^1 = 2 \quad \text{и} \quad c_{12}^1 = (c_{12}^1) / 2 = 0,5.
\]

Характеристическая матрица будет равна

\[
(C_1 \quad C_0) = \begin{pmatrix}
    1 & 2 & 1 & 0 \\
    0,5 & 1 & 0 & 1
\end{pmatrix}.
\]

Подставим значения \( c_0^0 \) и \( c_1^1 \) в уравнение \( J \) и получим параметры регулятора, которые зависят от \( y_{12}^0 \) и \( y_{22}^0 \):

\[
J = (Y_0 \mid X_0) = \begin{pmatrix}
    2 - 2y_{12}^0 & y_{12}^0 & 14y_{12}^0 - 6,5 & 4 - 8y_{12}^0 \\
    1 - 2y_{22}^0 & y_{22}^0 & 14y_{22}^0 - 5 & 3 - 8y_{22}^0
\end{pmatrix}.
\]
Пусть \( y_{12}^{0} = 0 \) и \( y_{22}^{0} = 0,5 \) тогда
\[
J = \begin{pmatrix}
Y_0 & X_0
\end{pmatrix} = \begin{pmatrix}
2 & 0 \\
0 & 0,5
\end{pmatrix} \begin{pmatrix}
-6,5 & 4 \\
2 & -1
\end{pmatrix}.
\]
\[
W_{\text{вых}}(s) = N(s)C^{-1}(s)X(s) = 
= \begin{pmatrix}
2 & 0 \\
3 & 1
\end{pmatrix} \begin{pmatrix}
s + 1 & 2s \\
0,5s & s + 1
\end{pmatrix}^{-1} \begin{pmatrix}
-6,5 & 4 \\
2 & -1
\end{pmatrix} = 
= \begin{pmatrix}
0 \begin{pmatrix}
-21s + 13 \\ -105s + 70
\end{pmatrix} / (2s + 1) & (12s + 8) / (2s + 1) \\
(8s + 4) / (15s + 11) / (2s + 1)
\end{pmatrix}.
\]
В установившемся режиме передаточная функция замкнутой системы равна
\[
W_{\text{вых}}(s = 0) = \begin{pmatrix}
2 & 0 \\
3 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}^{-1} \begin{pmatrix}
-6,5 & 4 \\
2 & -1
\end{pmatrix} = 
= \begin{pmatrix}
-13 & 8 \\
-17,5 & 11
\end{pmatrix}.
\]
Моделирование системы рассматривается в следующем разделе.

Моделирование системы: не выраженный случай. Для реализации регулятора запишем уравнение в виде \( Y_0 = X_0 e \), или
\[
\begin{pmatrix}
2 & 0 \\
0 & 0,5
\end{pmatrix} \begin{pmatrix}
u_1 \\
u_2
\end{pmatrix} = \begin{pmatrix}
-6,5 & 4 \\
2 & -1
\end{pmatrix} \begin{pmatrix}
e_1 \\
e_2
\end{pmatrix}.
\]
Связь между входом и выходом регулятора следующая:
\[
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix} = \begin{pmatrix}
2 & 0 \\
0 & 0,5
\end{pmatrix} \begin{pmatrix}
-6,5 & 4 \\
2 & -1
\end{pmatrix} \begin{pmatrix}
e_1 \\
e_2
\end{pmatrix} x_3 e.
\]
Уравнению (68) соответствует структура, приведенная на рис. 3. Структурная схема системы приведена на рис. 9, где первый блок соответствует регулятору \( W'(s) \) и второй блок – объекту \( W_{\text{об}}(s) \). Структурная схема объекта соответствует уравнениям (57).

Рис. 9. Структурная схема системы регулирования

Переходные процессы в системе для случаев \( v(t) = (1 \ 0)' \) и \( y(t) = (0 \ 1)' \) приведены на рис. 10. Как видим, система устойчивая, время переходного процесса 4–5 сек, перерегулирования нет. Характеристическая матрица системы
\[
C(s) = \begin{pmatrix}
s + 1 & 2s \\
0,5s & s + 1
\end{pmatrix}
\]
включает устойчивые «элементы», присутствуют перекрестные положительные связи и, кроме того, система статическая. Это объясняет характер процессов.

Рис. 10. Переходные процессы системы: \( v(t) = (1 \ 0)' \) и \( y(t) = (0 \ 1)' \)

Как видим, из переходных процессов динамические свойства системы соответствуют заданной характеристической матрице. Для удовлетворения хороших статических свойств можно ввести в регулятор двухканальный интегратор.

Заключение

При модальном синтезе многоканальных линейных систем наряду с использованием методов пространства состояний, матричных передаточных функций нашли распространение матричные полиномиальные методы описания и синтеза [1–5, 8, 10–17]. Наиболее трудоемкую часть синтеза регуляторов при использовании матричных полиномиальных методов составляет решение полиномиального диофантового уравнения, которое обычно преобразуется в матричное линейное уравнение с числовыми коэффициентами и матрицами неизвестными [1–6, 8–10]. Для многоканальных систем типичная трудность решения такого уравнения состоит в выражении числовых матриц при матрицах неизвестных. Так, например, в [1], где исследуется вопрос синтеза двухканального регулятора, стабилизирующего систему из трех масс и трех упругих элементов, матрица коэффициентов при неизвестных имеет размеры \( 16 \times 16 \) при ранге, равном 15. Для перехода к невырожденной системе имеется значительный произвол, приводящий к различным вариантам регулятора и к различным ограничениям на характеристическую матрицу системы. В данной работе сделана попытка систематизировать и алгоритмизировать методику синтеза регулятора. Предлагаемая методика продемонстрирована на примере тщательного анализа получаемой избы
точной матрицы для двухканального объекта. Приведен алгоритм исключения из числовой матрицы при неизвестных избыточных строк и столбцов с последующим решением уже не переопределенной системы.

**БИБЛИОГРАФИЧЕСКИЙ СПИСОК**


REFERENCES


6. Shoba E.V. Modal'nyi metod sinteza v prostranstve sostoyanii s nablyudatelem ponizhennogo poryadka: o vozmoznosti obse-
pecheniya staticheskogo rezhima [Modal method of synthesis in the space of states with an observer of a lower order: on the possi-


8. Voevodova A.A., Bobobekov K.M. Raschet parametrov regulyatora dlya stabilizatsii perevernutogo mayatnika po uguh otkloneniya [Calculation of the regulator parameters for stabilizing the inverted pendulum with respect to the deflection angle]. Sb. nauch. tr. NGTU, 2016, No. 3, (85), pp. 18–32.


10. Voevodova A.A. Stabilizatsiya dvukhmasswovoi sistemy: polinom'nyi metod sinteza dvuhkanal'noi sistemy [Stabilization of a two-

11. Bobobekov K.M. Polinom'nyi metod sinteza odnokanal'noi dvukhmasswovoi sistemy [Polynomial method of synthesis of a single-


Authors

Alexander Aleksandrovich Voevodan – Doctor of Engineering Science, Prof., the Subdepartment of Automatics, Novosibirsk State Technical University, Novosibirsk, e-mail: ucit@ucit.ru
Kurbanmurad Mullomirakovic Bobobekov – Ph.D. student, the Subdepartment of Automatics, Novosibirsk State Technical University, Novosibirsk, e-mail: kurbon_111@mail.ru

Для цитирования


For citation