СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА СЦЕПЛЕНИЯ КОЛЕСНОЙ ПАРЫ С РЕЛЬСАМИ ПРИ ТОРМОЖЕНИИ

Дата поступления: 
15.04.2018
Рубрика: 
Год: 
2018
Номер журнала (Том): 
УДК: 
629.4.015
DOI: 

10.26731/1813-9108.2018.2(58).112-117

Файл статьи: 
Страницы: 
112
117
Аннотация: 

Отмечены значительные отличия между величинами коэффициента сцепления колеса и рельса на железнодорожном транспорте, получаемыми экспериментально и рассчитываемыми традиционным методом. Предложен уточнённый экспериментальный метод определения коэффициента сцепления при помощи разработанного и запатентованного авторами устройства. Указывается на необходимость учета влияния технического состояния пути на величину коэффициента сцепления.

Общий алгоритм определения коэффициента сцепления проиллюстрирован на практическом примере. Аналитическое описание опытных данных предлагаемым методом удовлетворяет требованиям к достоверности результатов, что имеет важное прикладное значение при проведении тяговых расчетов и косвенно указывает на техническое состояние рельсового пути.

Определение коэффициента сцепления может производиться во время торможения движущегося специального вагона, оснащенного устройством для измерения и анализа угловой скорости колесной пары, а также устройством для измерения величины тормозного момента.

При торможении возникает колебание угловой скорости колесной пары, при этом за один период колебания происходят два события: упругое взаимодействие колесной пары и рельсов и проскальзывание их относительно друг друга. Коэффициент сцепления определяется как функция отношения времени упругого взаимодействия к периоду колебаний угловой скорости.

При этом учитывается:

- величина тормозного момента;

- сила прижатия колесной пары к рельсам;

- радиус колеса.

Важно отметить, что величина коэффициента сцепления зависит от технического состояния рельсового пути – при его ухудшении она уменьшается. Из этого следует, что на каждом участке пути, в зависимости от его конструктивных особенностей и технического состояния, определяется свой коэффициент сцепления.

Список цитируемой литературы: 

1. Nicola B. , Nicolò Z., Antonio G., Determination of Wheel-Roller Friction Coefficient on Roller Rigs for Railway Applications //, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017) pp. 13488-13497.

2. Tomberger, C., Dietmaier, P., Sextro, W., and Six, K., 2009, “Friction in Wheel–Rail Contact: A Model Comprising Interfacial Fluids, Surface Roughness and Temperature,” 8th International Conference on Contact Mechanics and Wear of Rail/Wheel System (CM2009), Firenze, Italy, 15–18 September 2009, pp. 121–132.

3. Kalker, J. J., 1991, “Wheel–Rail Rolling Contact Theory,” Wear, 144(1–2), pp. 243–261.

4. Chen, H., Ishida, M., and Nakahara, T., 2005, “Analysis of Adhesion under Wet Conditions for Threedimensional Contact Considering Surface Roughness,” Wear, 258(7–8), pp. 1209–1216.

5. Механика и трибология движения колесной пары в рельсовой колее [Электронный ресурс]: монография / Г. С. Гура. – М.: УМЦ ЖДТ, 2013.

6. Казаринов А. В., Горюнов Г. Н., Гудас М. В., Касандров М. Д., Липатов Л. И., Макас А. А., Спиринцев С. В.  Измерения экс-плуатационного уровня сцепления колес с рельсами в тормозных режимах на грузонапряженных участках Сибири и Забайкалья // Вестник  ВНИИЖТа. 2010. №3. С.14-20.

7. Ахмадеева А.А., Гозбенко В.Е. Влияние профиля пути на вертикальные колебания железнодорожного экипажа // Труды Братского государственного университета. Сер. Естественные и инженерные науки. 2013. т. 1. С.186-190.

8. Новосельцев В.П., Новосельцев П.В., Суслов О.А., Гордеева А.А., Елисеев С.В. Устройство для определения продольной жесткости рельсового пути // Патент на полезную модель №138300 от 10 февраля 2014г.

9. Новосельцев В.П., Елисеев С.В., Новосельцев П.В., Гордеева А.А., Купцов Ю.А. Способ контроля устойчивости бесстыкового рельсового пути // Патент на изобретение № 2614744 от 29 марта 2017 года.

10. Правила тяговых расчётов для поездной работы № 867р от 12.05.2016 г.

11. Baek, K., Kyogoku, K., and Nakahara, T., 2008, “An Experimental Study of Transient Traction Characteristics between Rail and Wheel under Low Slip and Low Speed Conditions”, Wear, 265(9 – 10), pp. 1417–1424.

12. Каргапольцев С.К., Новосельцев П.В., Купцов Ю.А. Волнообразный износ рельсов при торможении // Мир транспорта. 2017. №5. С. 46-53.

13. Гордеева А.А., Новосельцев П.В., Купцов Ю.А. Эксперименты с проскальзыванием колесных пар локомотива // Мир транс-порта, МГУПС (МИИТ) №3(70). М.-2017, С. 104-110.

14. Новосельцев В.П., Новосельцев П.В., Гордеева А.А. Влияние продольной жесткости рельсового пути на проскальзывание колесной пары локомотива по рельсу // Мир транспорта, МГУПС (МИИТ) №4(48). М.-2013, С. 34-38.

15. Каргапольцев С.К., Новосельцев П.В., Купцов Ю.А. Влияние продольной жесткости рельсового пути на динамику тягового привода локомотива // Современные технологии. Системный анализ. Моделирование. 2017.- № 3 (55).- С.174-179.

16. Гозбенко В.Е., Карлина А.И., Каргапольцев С.К. Главные координаты в решении задач вертикальной динамики транспортного средства. Системы. Методы. Технологии. 2016. № 3 (31). С. 58-62.

17. Хоменко А.П., Елисеев С.В., Гозбенко В.Е., Банина Н.В. Устройство для управления состоянием объекта защиты. Патент на полезную модель. RUS 56858 21.04.2006

18. Ахмадеева А.А., Гозбенко В.Е. Динамические свойства вагона с двухступенчатым рессорным подвешиванием. Современные технологии. Системный анализ. Моделирование. 2010. № 3. С. 60-69.

19. Корнеев С.А., Крупников И.В., Поляков С.Н., Шалай В.В. Расчётно-экспериментальный метод определения материальных параметров упруго-пластических материалов на траекториях активного деформирования малой кривизны. Омский научный вестник. 2006. № 4 (38). С. 86-90.