Eliseev A. V. Razvitie sistemnykh predstavlenii v dinamike kolebatel'nykh struktur: chastotnaya funktsiya i formy svyaznosti dvizhenii elementov [Development of system ideas in the approach of the dynamics of oscillatory structures: the frequency function and forms of connectivity of the elements’ motions]. *Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie* [*Modern Technologies. System Analysis. Modeling*], 2020, No. 4 (68), pp. 40–49. – DOI: 10.26731/1813-9108.2020.4(68).40-49

10.26731/1813-9108.2020.4(68).40-49

This article develops new approaches to the formation of a methodological basis when evaluating the properties of oscillatory structures by the examples of mechanical oscillatory systems with lumped parameters, which are used as computational schemes for technical objects of technological and transport purposes. It considers the features of the system approach in evaluating the dynamic interactions of elements of mechanical oscillatory systems. Methods for evaluating the properties of mechanical oscillatory systems are developed on the basis of the characteristics that depend on the coefficients of the forms of motion of partial systems in the free oscillation mode. The paper introduces the concept of a frequency function that reflects the features of the ratio of potential and kinetic energy of the system. When applied to mechanical oscillatory systems with two degrees of freedom, it proposes and develops an algebraic method for constructing a frequency function that depends on the connectivity coefficient and reflects the dynamic features of a mechanical oscillatory system. For the model example, it is shown that the constructed frequency function coincides with the frequency energy function obtained in the framework of methods of structural mathematical modeling. A method for constructing frequency functions is developed to evaluate the features of the dynamic properties of mechanical oscillatory systems that display the properties of connectivity of the forms of the elements’ oscillatory motions. A relationship between the characteristic of elastic elements and the distribution of coefficients of forms that determine the extreme values of the frequency function is established. A number of forms of frequency functions for various variants of mechanical oscillatory systems are considered, including the limit parameters of rigidity that determine the degree of connectivity of mass-inertia elements of the system. The results of the solution are presented using model examples.

- Clarence W. de Silva. Vibration. Fundamentals and practice. Boca Raton, London, New York, Washington, D.C.: CRC Press, 2000. 957 p.
- Karnovsky I.A., Lebed E. Theory of vibration protection, Springer International Publishing, Switzerland, 2016. Pp. 708.
- Iwnicki S. Handbook of railway vehicle dynamics. CRC Press Taylor & Francis Group, 2006. 527 p.
- Blekhman I.I. Sinkhronizatsiya v prirode i tekhnike [Synchronization in nature and technology]. Moscow: URSS Publ., 2015. 432 p.
- Blekhman I.I. Chastotnaya sinkhronizatsiya i eyo vozmozhnaya rol' v yavleniyakh mikromira [Frequency synchronization and its possible role in the phenomena of the microcosm].
*Avtomatika i telemekhanika*[*Automation and remote control*], 2020. No. 8. Pp. 54–62. - Banakh L., Kempner M. Vibrations of mechanical systems with regular structure. Berlin; Heidelberg: Springer, 2010. 262 p.
- Banakh L.Ya. Metody dekompozitsii pri issledovanii kolebanii mekhanicheskikh sistem [Decomposition methods for studying vibrations of mechanical systems]. Izhevsk: NIC Regulyarnaya i khaoticheskaya dinamika Publ., 2016. 292 p.
- Banakh L.Ya., Barmina O.V. Kolebaniya samopodobnykh struktur v mekhanike [Vibrations of self-similar structures in mechanics].
*Problemy mashinostroeniya i nadezhnost' mashin*[*Journal of machinery manufacture and reliability*], 2013. No. 2. Pp. 3–9. - Strett Dzh. V. Teoriya zvuka [Theory of sound]. Moscow: GITTL Publ., 1955. Vol. 1. 503 p.
- Eliseev S.V., Eliseev A.V. Theory of oscillations. Structural mathematical modeling in problems of dynamics of technical objects.
*Series: Studies in systems, decision and control,*Vol. 252, Springer International Publishing, Cham, 2020, 521 p. - Bol'shakov R.S., Nikolaev A.V., Kuznetsov N.K. Ispol'zovanie rychazhnykh mekhanizmov dlya nastroiki svyaznosti dvizhenii elementov vibratsionnykh tekhnologicheskikh mashin [Use of lever mechanisms to adjust the conectivity of movements of elements of vibrating technological machines].
*V sbornike: Naukoyomkie i vibrovolnovye tekhnologii obrabotki detalei vysokotekhnologichnyh izdelii. Materialy mezhdunarodnogo nauchnogo simpoziuma tekhnologov-mashinostroitelei*[*In the collection: High-tech and vibrowave technologies for processing parts of high-tech products:**the materials of the international scientific symposium of mechanical engineering*technologist]*.*Ministry of Education and Science of the Russian Federation; Don State Technical University; Russian Foundation for Basic Research Publ., 2018. Pp. 221–225. - Kinash N.Zh., Kashuba V.B., Vyong K.T. Svyaznost' dvizheniia elementov i formy vneshnikh vozdeistvii: matematicheskie modeli vzaimodeistvii v tsepnykh strukturakh [Connectivity of movements of elements and forms of external influences: mathematical models of interactions in chain structures].
*Sistemy. Metody. Tekhnologii*[*System. Methods. Technologies*]. 2016. No. 4 (32). Pp. 28–38. - Eliseev S.V. Prikladnoi sistemnyi analiz i strukturnoe matematicheskoe modelirovanie (dinamika transportnykh i tekhnologicheskikh mashin: svyaznost` dvizhenii, vibratsionnye vzaimodeistviya, rychazhnye svyazi): monografiya [Applied system analysis and structural mathematical modeling (dynamics of transport and technological machines: connectivity of movements, vibration interactions, lever links): a monograph]. In Artyunin A.I. (resp. ed.) Irkutsk: IrGUPS Publ., 2018. 692 p.
- Eliseev S.V., Bol`shakov R.S., Nguen D. Kh., Vyong K.T. Opredelenie chastot sobstvennykh kolebanii mechanicheskikh kolebatel`nykh sistem: osobennosti ispol`zovaniya chastotnoi energeticheskoi funktsii. Chast` I [Determining the frequencies of natural oscillations of mechanical oscillatory systems: features of using the frequency energy function. Part I].
*Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta*[*Proceedings of**Irkutsk State Technical University*], 2016. No. 6 (113). Pp. 26–33. - Eliseev S.V., Bol`shakov R.S., Nguen D. Kh., Vyong K.T. Opredelenie chastot sobstvennykh kolebanii mechanicheskikh kolebatel`nykh sistem: osobennosti ispol`zovaniya chastotnoi energeticheskoi funktsii. Chast` II [Determining the frequencies of natural oscillations of mechanical oscillatory systems: features of using the frequency energy function. Part II].
*Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta*[*Proceedings of Irkutsk State Technical University*], 2016. No. 7 (114). Pp. 10–23.