THE EFFECT OF THE ELECTROEXPLOSIVE CARTIDGE DESIGN ON THE PROFILE OF A METAL PIPE AT HIGH-SPEED DEFORMATION BY PULSE PRESSURE

Receipt date: 
15.02.2019
Bibliographic description of the article: 

Chebotnyagin L. M., Potapov V. V. Vliyanie konstruktsii elektrovzryvnogo kartridzha na profil' metallicheskoi truby pri skorostnom deformirovanii impul'snym davleniem [The effect of the electroexplosive cartidge design on the profile of a metal pipe at high-speed deformation by pulse pressure]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 63, No. 3, pp. 13–22. DOI: 10.26731/1813-9108.2019.3(63).13–22

Year: 
2019
Journal number: 
УДК: 
621.777.073
DOI: 

10.26731/1813-9108.2019.3(63).13–22

Article File: 
Pages: 
13
22
Abstract: 

The article presents the results of a computational-experimental study of the effect of the thickness of the end frontal parts of an electroexplosive cartridge on the profile of a metal pipe during deformation by a pulse pressure generated by a plasma expanding channel of an electric spark initiated by an electrical explosion of a wire. Calculation and experimental studies are based on the analysis of pipe profiles under high-speed deformation by pulse pressure and analytical studies on the mechanics of acoustic wave propagation in transmitting media. Using the acousto-electrowave model proposed by the authors and based on the analogy of the propagation of pulsed pressure waves in transmitting media and pulsed voltage waves in electric lines with distributed parameters, calculations were performed that made it possible to reveal the dependence of the final profile of the pipe when it was deformed by pulsed pressure from the design of an electroexplosive cartridge. The calculations show the presence of a significant dependence of the pipe profile on the thickness of the end frontal parts of an electroexplosive cartridge. It is shown that with an increase in the thickness of the end frontal parts of an electroexplosive cartridge, the profile of the pipe becomes equal (becomes flatter) during high-speed deformation. Thus, by changing the thickness of the end frontal parts of an electroexplosive cartridge, you can adjust the parameters of the impact of the deformable pipe surface with the surface of the workpiece opening, which allows you to improve the quality of rolling and increase the likelihood of obtaining a welded joint between the surfaces during repair and manufacturing of the "pipe – tube sheet" heat exchanger assembly.

List of references: 

Bazhan P.I., Kanevets G.I., Seliverstov V.M. Spravochnik po teploobmennym apparatam [Handbook of heat exchangers].  Moscow: Mashinostroenie Publ., 1989. 369 p.: il.

2.   GOST R 52630-12. Sosudy i apparaty stal'nye svarnye. Obshchie tekhnicheskie usloviya. Vved. 2013-04-01 [Vessels and apparatus welded steel. General specifications. Introduced on 2013-04-01]. Moscow: Standartinform Publ., 2013. 87 p.

3.   Dmitriev V.G., Platonenko V.T., Kolmakov V.P., Kudinov V.M. Opredelenie parametrov soudareniya pri svarke trub s trubnymi reshetkami elektricheskim vzryvom provodnika [Determination of collision parameters during welding of pipes with pipe grids by electric explosion of wire]. Avtomaticheskaya svarka [Automatic welding], 1981. No.9. Pp. 33–35.

4.   Kolmakov V.P., Grechneva M.V. Issledovanie germetichnogo soedineniya truba-reshetka vypolnennogo svarkoi vzryvom [A study of the hermetic pipe-grid connection made by explosion welding]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2010. No.3(27). Pp. 45–50.

5.   Dmitriev V.G. Svarka elektricheskim vzryvom provodnika soedinenii truba-reshetka teploobmennykh apparatov [Welding pipe-grid connections using electric wire explosion in heat exchangers]. Nauchno-tekhnicheskii sbornik TsNIITENEFTEKhIM (ekspluatatsiya, modernizatsiya i remont oborudovaniya) [Scientific and technical collection of TsNIITENEFTEKhIM (operation, modernization and repair of equipment)], 1976. No.10. Pp. 9–11.

6.   Zhutchkov A.I., Zinoviev N.T., Filatov G.P. Pressing of tubes in tube slabs using multiple electrical discharge in liquid. III International Conference "PLASMA PHYSICS AND PLASMA TECHNOLOGY", Minsk, 18-22 September. 2000. Pp. 558–561.

7.   GOST 23691-79 – GOST 23693-79. Soedinenie trub s trubnymi reshetkami i kollektorami teploobmennykh apparatov. Zapressovka trub s primeneniem istochnikov impul'snogo davleniya. Vved. 1981-01-01 [Connection of pipes with pipe grids and collectors of heat exchangers. Pressing of pipes with the use of pulse pressure sources. Introduced on 1981-01-01]. Moscow: Izd-vo Standartov Publ., 1986. 65 p.

8.   Kolmakov V.P. et al. Soedinenie trubchatykh detalei elektricheskim vzryvom provodnika [Connecting tubular parts by the electric explosion of wire]. Irkutsk: IrGTU Publ., 2011. 152 p.

9.   Mazurovskii B.Ya. Elektrogidroimpul'snaya zapressovka trub v trubnykh reshetkakh teploobmennykh apparatov [Electrohydroimpulse pressing of tubes in tube grids of heat exchangers]. Kiev: Naukova Dumka Publ., 1980. 172 p.

10. Chebotnyagin L.M. Soedinenie trubchatykh detalei impul'snym davleniem rasshiryayushchegosya plazmennogo kanala elektricheskogo razryada: dis. … kand. tekhn. nauk : 05.14.12 : zashchishchena 26.11.2014 : utv. 06.04.2015 [Connection of tubular parts by pulse pressure of expanding plasma channel of electric discharge: Ph. D. (Engineering) diss.: 05.14.12 : defended 26.11.2014 : approved 06.04.2015]. Tomsk, 2014. 137 p.

11. Chebotnyagin L.M., Potapov V.V., Lopatin V.V. Kinetics of deformation of alloys by pulsed pressure of an electric discharge. Russian Physics Journal, 2015. Vol. 58. No 1. Pp. 56-62. DOI: 10.1007/s11182-015-0462-4

12. Chebotnyagin L.M., Potapov V.V., Lopatin V.V. Patterns of alloy deformation by pulsed pressure. Russian Physics Journal, 2015. Vol. 58. No 2. P. 212-220. DOI: 10.1007/s11182-015-0484-y

13. Kolmakov V.P., Grechneva M.V., Potapov V.V., Chebotnyagin L.M. Improving the quality of the tube-tube plate welded joint in welding with the energy of electrical explosion of a conductor. Welding International, 2015. Vol. 29, Issue 8, Pp. 633–638. DOI: 10.1080/09507116.2014.960699

14. Deribas A. A. Fizika uprochneniya i svarki vzryvom [Physics of hardening and explosion welding]. Novosibirsk: Nauka Publ., 1980. 221 p.

15. Cole R. H. Underwater Explosions: Princeton University Press, Princeton, New Jersey, 1948. 495 p.

16. Anuchin M. A. Shtampovka vzryvom. Osnovy teorii [Explosion stamping. Fundamentals of the theory]. Moscow: Mashinostroenie Publ., 1972. 150 p.

17. Drabkina S.I. K teorii razvitiya kanala iskrovogo razryada [On the theory of the spark discharge channel development]. ZhETF [JETP]. 1951. Vol. 21. Iss. 4. Pp. 473–483.

18. Krug K.A. Osnovy elektrotekhniki. Ch.2. [Fundamentals of electrical engineering. Part 2]. Moscow: Gosenergoizdat Publ., 1946. 637 p.