MODELING AND ANALYSIS OF INFLUENCE OF PROCESS CONDITIONS ON CUTTING FORCES DURING END MILLING

Receipt date: 
23.08.2018
Bibliographic description of the article: 

Ponomaryov B. B., Nguyen S. H. Modeling and analysis of influence of process conditions on cutting forces during end milling. Modern technologies. System analysis. Modeling, 2018, Vol. 59, No. 3, pp. 8–16. DOI: 10.26731/1813-9108.2018.3(59).8-16

Year: 
2018
Journal number: 
УДК: 
621.9
DOI: 

10.26731/1813-9108.2018.3(59).8-16

Article File: 
Pages: 
8
16
Abstract: 

The article presents simulation results for ball end milling and projection variation analysis results for cutting forces Fx, Fy and Fz at different depth of cut and feed per tooth.

The 2D and 3D models of milling dynamics based on the finite-element tool-surface interaction model were developed using SIMULIA Abaqus. As a tool, a ball end mill with a diameter of 2 mm was selected from high-speed steel P18, and the workpiece is a rectangular plate made of steel 45. Johnson-Cook models are used to specify the linear-elastic and mechanical material properties of tool and workpiece.

Computational finish milling simulation results at different cutting parameters can be used to predict the nature of loads on the tool depending on its design when developing control software for CNC-based mills. Taking into account strength and rigidity parameters, a reasonable choice of tools can improve equipment performance.

Dependency graphs of cutting forces on the tool rotation angle are given for different values of feeds per tooth and depths of cut. Comparing the results of modeling with theoretical conclusions and the existing results of experiments of other authors, the ABAQUS program was proved to work in the modeling and analysis of the cutting forces of end milling processes.

List of references: 

1.      Jensen C.G., Red W.E., Pi J. Tool selection for five-axis curvature matched machining. Computer-Aided Design, 2002, Vol. 34, pp. 251–266.

2.      Shatla M., Altan T. Analytical modeling of drilling and ball-end milling. Journal of Materials Processing Technology, 2000, Vol. 98, pp. 125–133.

3.      Fontaine N., Devillez A., Moufki A., Dudzinski D. Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. International Journal of Machine Tools and Manufacture, 2006, Vol. 46, pp. 367–380.

4.      Gradisek J., Kalveram M., Weinert K. Mechanic identification of specific force coefficients for general end mill. International Journal of Machine Tools and Manufacture, 2004, Vol. 44, pp. 401–414.

5.      Larue A., Altintas Y. Simulation of flank milling processes. International Journal of Machine Tools and Manufacture, 2005, Vol. 45, pp. 549–559.

6.      Clayton P.A., El-Wardany T., Elbestawi M.A., Viens D. A mechanistic force model of the 5-axis milling process. Proceedings of the ASME Manufacturing Engineering Division, 2000, Vol. 11, pp. 979–987.

7.      Boujelbene M., Moisan A., Bouzid W.,Torbaty S. Variation Cutting Speed on the Five Axis Milling. J. Achiev. Mater. Manuf. Eng., 2007, Vol. 21(2), pp. 7–14.

8.      Daymi A., Boujelbene M., Ben Amara A., Linares J. M. Improvement of the Surface Quality of the Medical Prostheses in High Speed Milling. Int. Rev. Mech. Eng., 2009, 3(5), pp. 566–572.

9.      Ozturk B., Lazoglu I. Machining of Free-Form Surfaces. Part I: Analytical Chip Load. Int. J. Mach. Tools Manuf., 2006, 46(7–8), pp. 728–735.

10.    Prat D., Fromentin G., Poulachon G., Duc E. Experimental Analysis and Geometrical Modeling of Cutting Conditions Effect in 5 Axis Milling With Ti6Al4 V Alloy. Procedia CIRP, 2012, Vol. 1, pp. 84–89.

11.    Ponomarev B.B., Nguyen Sy Hien. Finish milling dynamics simulation considering changing tool angles. IOP Conf. Ser.: Ma-ter. Sci. Eng., 2017, 327/022083.

12.    Johnson G.R., Cook W.H. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain rates, Temperatures and Pressures. Engineering Fracture Mechanics, 1985, Vol. 21, No. 1, pp. 31–48.

13.    Elektronnyi resurs: http://abaqus.software.polimi.it/v2016/

14.    Duan C.Z., Dou T., Cai Y.J., Li Y.Y. Finite element simulation & experiment of chip formation process during high speed ma-chining of AISI 1045 hardened steel. Int. J. Recent Trend Eng., 2009, 1(5), 46–50.

15.    Khod'ko A.A. Osobennosti vybora modeli plastichnosti metalla deformiruemoi zagotovki pri chislennom is-sledovanii protsessa gidrodinamicheskoi shtampovki [Features of the choice of the model of plasticity of the metal of a deformable workpiece in the numerical study of the process of hydrodynamic stamping]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology], 2014, No. 5, pp. 11–24.

16.    Kuz'kin V.A., Mikhalyuk D.S. Primenenie chislennogo modelirovaniya dlya identifikatsii parametrov modeli Dzhonsona-Kuka pri vysokoskorostnom deformirovanii alyuminiya [The use of numerical modeling to identify the parameters of the Johnson-Cook model for high-speed deformation of aluminum]. Vychislitel'naya mekhanika sploshnykh sred [Computational continuum mechanics], 2010, Vol. 3, No. 1, pp. 32–43.

17.    Reznikov N.I. Uchenie o rezanii metallov [The doctrine of metal cutting]. Moscow: Mashgiz Publ., 1947, 588 p.

18.    Vul'f A.M. Rezanie metallov [Metal cutting]. Leningrad: Mashinostroenie Publ., 1973, 496 p.

19.    Altintas Y., Lee P. Mechanics and Dynamics of Ball End Milling. ASME J. Manufact. Science and Eng., 1998, Vol. 120, pp. 684–691.