Physics and technology of strengthening of polymeric insulation material of electric machines using thermal radiation

Receipt date: 
31.01.2020
Bibliographic description of the article: 

Lobytsin I.O. Fizika i tekhnika uprochneniya polimernogo izolyatsionnogo materiala elektricheskikh mashin teplovym izlucheniem [Physics and technology of strengthening of polymeric insulation material of electric machines using thermal radiation]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 3(67), pp. 108–116. 10.26731/1813-9108.2020.3(67).108-116

Section: 
Year: 
2020
Journal number: 
УДК: 
621.33
DOI: 

10.26731/1813-9108.2020.3(67).108-116

Article File: 
Pages: 
108
116
Abstract: 

This article is aimed at considering infrared radiation from the viewpoint of compatibility of the impact of thermal energy generated in various types of emitters and polymer insulating material used during the manufacture or repair of electrical machines of traction rolling stock. The results of the local heating process with short-wave, medium-wave, and long-wave heat radiation of samples of glass-and-mica tapes impregnated in liquid electrical insulating polymer varnishes widely used for insulation of windings of electrical machines of traction rolling stock are clearly described. The physics and technology of the occurrence of thermal radiation using ceramic emitters, as well as the properties and role of a functional ceramic coating  during the formation of pulsed narrow-band radiation and a high heat transfer rate, are extensively analyzed. The dependence of the emissivity factor on the specific resistivity of the material of the infrared emitter, as well as on its temperature, is shown using classical Maxwell’s equations. On the basis of the studies performed, the result of using the most efficient thermal infrared radiation generator is obtained. This allows us to judge that the application of emitters with low resistivity to restore the electrical insulation of bodies results in large losses of electricity, which means it is energetically inefficient when used intensively. It is noted that only infrared emitters with properties close to a completely black body are suitable for this purpose, namely, ceramic emitters with a darkened surface on the front side and a golden coating on the opposite side. The prospects for the development of the technology using the technology of microarc oxidation, the main property of which is the possibility of regulating the heating parameters, as well as the emergence of modified structures with special properties, are considered. The practical application of thermal radiation in locomotive engineering will make it possible to achieve a perfectly smooth surface of insulating structures, particularly, insulating fingers of the support brackets of the brush holders of traction electric motors. As a result of which, there will be no microdefects and porosities that are characteristic of traditional convective drying.

List of references: 

1.   Khudonogov A.M., Lytkina E.M., Dul'skii E.Yu. Kriterii obosnovannosti vybora propitochnogo materiala v tekhnologii remonta tyagovykh elektricheskikh mashin podvizhnogo sostava [The criterion for the validity of the choice of impregnating material in the technology of repair of traction electrical machines of rolling stock]. Povyshenie tyagovo-energeticheskoi effektivnosti i nadezhnosti elektropodvizhnogo sostava: Mezhvuz. temat. sb. nauch. tr. [Increase of traction and energy efficiency and reliability of electric rolling stock: Interuniversity theme-based proceedings]. Omsk state transport un-ty. Omsk, 2013. Pp. 38–43.

2.   Infrakrasnye keramicheskie nagrevatel'nye elementy (izluchateli). OOO Nomakon-Yevroliniya: Razrabotka, proektirovanie i proizvodstvo nauchno-tekhnicheskoi produktsii [Infrared ceramic heating elements (emitters). LLC Nomakon-Euroline: Development, design and production of scientific and technical products] [Electronic media]. URL: http://www.nomacon.by/ik/ich-101.php (Accessed 13.05.2019).

3.   Khudonogov A.M., Smirnov V.P., Konovalenko D.V., Gamayunov I.S. et al. Printsipy upravleniya energopodvodom v protsessakh udaleniya vlagi iz izolyatsii obmotok tyagovykh elektricheskikh mashin [Principles of energy supply control in the processes of moisture removal from insulation of windings of traction electric machines]. Energosberezhenie: tekhnologii, pribory, oborudovanie: sb. nauchn. trudov [Energy saving: technologies, devices, equipment: Proceedings]. In A.V. Kryukov (ed.) Irkutsk: IrGUPS Publ., 2009. Pp. 125–129.

4.   Lobytsin I.O., Khudonogov A.M., Dul'skii E.Yu. Termoradiatsionnoe vosstanovlenie malogabaritnykh izolyatsionnykh elementov tyagovykh elektrodvigatelei lokomotivov [Thermoradiation restoration of small-sized insulating elements of traction electric motors of locomotives]. Razrabotka i ekspluatatsiya elektrotekhnicheskikh kompleksov i sistem energetiki i nazemnogo transporta: Materialy tret'yei mezhdunarodnoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem [Development and operation of electrical complexes and systems of energy and land transport: Proceedings of the third international scientific and practical conference with international participation]. Omsk state transport un-ty. Omsk, 2018. Pp. 236–243.

5.   Dul'skii E.Yu., Khudonogov A.M., Lytkina E.M. Vliyanie khimicheskikh svoistv polimerov i rezhimov IK-energopodvoda na prochnost' i plastichnost' izolyatsii v lokal'nykh tekhnologiyakh prodleniya resursa elektricheskikh mashin tyagovogo podvizhnogo sostava [Influence of the chemical properties of polymers and modes of IR energy supply on the strength and plasticity of insulation in local technologies for extending the service life of electric machines of traction rolling stock]. Izvestiya Transsiba [Journal of Transsib Railway Studies]. Omsk state transport un-ty. Omsk, 2015. No. 1 (21). Pp. 6–11.

6.   Khudonogov A.M. Teplovoi balans i puti povysheniya teplovoi ekonomichnosti radiatsionnoi sushilki [Heat balance and ways of increasing the thermal efficiency of the radiation dryer]. Uluchshenie ekspluatatsii i remonta sel'skokhozyaystvennoi tekhniki [Improving the operation and repair of agricultural machinery], Irkutsk, 1973. Pp. 84–88.

7.   Khudonogov A.M., Dul'skii E.Yu., Ivanov V.N., Lobytsin I.O. Analiz konstruktivnykh osobennostei elementov elektromagnitnoi sistemy tyagovykh elektrodvigatelei lokomotivov [Analysis of the design features of the elements of the electromagnetic system of traction electric motors of locomotives]. Transportnaya infrastruktura Sibirskogo regiona: Materialy devyatoi mezhdunarodnoi nauchno-prakticheskoi konferentsii 10–13 aprelya 2018 g. Irkutsk: v 2 t. [Transport infrastructure of the Siberian region: Materials of the ninth international scientific and practical conference April 10-13, 2018 Irkutsk: in 2 volumes]. Irkutsk: IrGUPS Publ., 2018. Vol. 2. Pp. 351–355.

8.   Lykov A.V. Teplo i massoobmen v protsessakh sushki [Heat and mass transfer in drying processes]. Moscow: Gosenergoizdat Publ., 1956. 464 p.

9.   Ismailov Sh.K. Teplovoe sostoyanie tyagovykh i vspomogatel'nykh elektricheskikh mashin elektrovozov postoyannogo i peremennogo toka [Thermal state of traction and auxiliary electric machines of DC and AC electric locomotives]. Omsk: OmGUPS Publ., 2001. 76 p.

10. Prishchep L.G., Filatkin P.L. Issledovanie ul'trafioletovykh i infrakrasnykh luchei: ucheb posobie [Study of ultraviolet and infrared rays: a textbook]. Elektricheskii privod i primenenie elektroenergii v sel'skom khozyaystve [Electric drive and the use of electricity in agriculture]. Moscow, 1980. Pp. 90–97.

11. Burakovskii T., Gizin'skii Ye., Salya A. Infrakrasnye izluchateli [Infrared emitters]. Transl. from Polish. Leningrad: Energiya Publ., 1978. 408 p.

12. Ivanov P.Yu., Manuilov N.I.,. Dul'skii E.Yu Prichiny samoproizvol'nogo srabatyvaniya avtotormozov v gruzovykh poyezdakh [Causes of spontaneous operation of automatic brakes in freight trains]. Izvestiya Transsiba [Journal of Transsib Railway Studies], 2017. No. 2 (30). Pp. 17–25.

13. Rakhimov R.Kh., Saidov M.S., Yermakov V.P. Osobennosti sinteza funktsional'noi keramiki s kompleksom zadannykh svoystv radiatsionnym metodom. Part 5. Mekhanizm generatsii impul'sov funktsional'noi keramikoi [Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 5. Mechanism of generation of pulses by functional ceramics]. Computational nanotechnology, 2016. No. 2.

14. Lebedev P.D. Sushka infrakrasnymi luchami [Drying by infrared rays]. Moscow, 1955.

15. Gurevich V.Z. Energiya nevidimogo sveta [Energy of invisible light]. Moscow:  Nauka Publ., 1973. 142 p.

16. Borkhert R., Yubits V. Tekhnika infrakrasnogo nagreva [Technique of infrared heating]. Transl from German. In Levitin I.B. (ed.) Moscow: State power engineering Publ., 1963. 278 p.

17. Lebedev P.D. Raschet i proektirovanie sushil'nykh ustanovok [Calculation and design of drying plants]. Moscow: State power engineering Publ., 1963. 320 p.

18. Dul'skii E.Yu. Analiz prostranstvennogo raspredeleniya infrakrasnogo izlucheniya v protsesse kapsulirovaniya izolyatsii elektricheskikh mashin tyagovogo podvizhnogo sostava [Analysis of the spatial distribution of infrared radiation in the process of encapsulating the insulation of electric machines of traction rolling stock]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University]. In Golovnykh I.M. et al. (eds.) Irkutsk:  IrGTU Publ., 2013. No. 7 (78). Pp. 132–136.

19. Dul'skii Ye.Yu. Sovershenstvovanie tekhnologii remonta magnitnoi sistemy tyagovykh dvigatelei elektrovozov [Improvement of the technology of repair of the magnetic system of traction motors of electric locomotives]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2012. No. 4 (63). Pp. 103–108.

20. Dul'skii Ye.Yu. Modelirovanie rezhimov IK-energopodvoda v tekhnologii prodleniya resursa tyagovykh elektricheskikh mashin s ispol'zovaniem metoda konechnykh elementov [Modeling of IR energy supply modes in the technology of extending the service life of traction electrical machines using the finite element method]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2013. No. 12 (83). Pp. 258–263.