THE RESULTS OF THE METALLOGRAPHIC AND X-RAY MICROANALYSIS OF RAIL SECTIONS OF THE CATEGORY DT350

Receipt date: 
20.06.2018
Section: 
Year: 
2018
Journal number: 
УДК: 
625.143.2, 620.18
DOI: 

10.26731/1813-9108.2018.2(58).98-106

Article File: 
Pages: 
96
106
Abstract: 

To identify the imperfection of technological processes in the smelting of rail steel and the subsequent production of rails in modern conditions, traditional methods of research are not enough. The purpose of this article is to continue the works that have already been started on the development of new techniques and the possibilities of applying a combination of traditional, standardized metal analysis techniques and modern methods for analyzing materials such as scanning electron microscopy (SEM), X-ray microanalysis, measuring the Barkhausen noise amplitude, residual stresses for searching for defects, analyzing the structure of the material in order to improve the production technology. For the analysis, a scanning electron microscope JEOL JIB-Z4500, equipped with an add-on unit for energy-dispersive analysis, a residual stress determination device and a digital analyzer Rollscan 300 for measuring the amplitude of Barkhausen noise, as well as an optical microscope MET-2, cutting and grinding machines for preparation samples to metallographic studies. According to changes in the magnetoelastic parameter, defects of structure and cracks in the surface layer of the sample were determined in different regions. The study of the microstructure on the metallographic microscope MET-2 made it possible to establish the phases of which the sample is made. The SEM study allowed confirming this and accurately measuring the lamellar perlite score. Also, the SEM and X-ray microanalysis method helped to determine the nature and composition of non-metallic inclusions, to show the distribution of elements over the surface of microsections. Thus, the combination of traditional metallographic, mechanical and new research methods that complement and refine the requirements of GOST R 51685-2013, can allow fast and accurate analyzing of the conformity of rail steels to GOSTs, and also will allow determining the causes of rail failure and non-conformities to technological processes.

List of references: 

1.  Shtaiger, M. G.  Problemy kachestva komponentov putevogo kompleksa [Problems of quality of components of the track complex]. Put' i putevoe khozyaistvo [Railway Track and Facilities], 2011, No. 12, pp. 6-9.

2.Ermakov, V. M., Shtaiger M. G., Yanovich O. A. Elektronnyi pasport rel'sa  [Electronic Rail Passport]. Put' i putevoe khozyaistvo [Railway Track and Facilities], 2016, No. 4, pp. 13-17.

3. Shtaiger M.G., Ivanchik N.N., Lisitsyn A.I., Karlina A.I. Ispol'zovanie metodov skaniruyushchei elektronnoi mikroskopii dlya metallografii rel'sovykh stalei [Use of scanning electron microscopy methods for metallography of rail steels]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2017, No. 4 (56), pp. 189-196.

4. GOST R 51685-2013. Rel'sy zheleznodorozh-nye. Obshchie tekhnicheskie usloviya [Railway rails. General specifications].

5. GOST 10243-75 (ST SEV 2837-81) Stal'. Metody ispytanii i otsenki makrostruktury [Steel. Methods of testing and evaluation of the macrostructure].

6. GOST 1778-70 (ISO 4967-79) Metallograficheskie metody opredeleniya nemetallicheskikh vklyuchenii [Metallographic methods for determining nonmetallic inclusions].

7. GOST 8233-56 Stal'. Etalony mikrostruktur [Standards of microstructures].

8. Gromov V.E., Yur'ev A.B., Morozov K.V., Ivanov Yu.F. Mikrostruktura zakalennykh rel'sov [Microstructure of hardened rails]. Novokuznetsk: Inter-Kuzbass Publ., 2014, 213 p.

9. Gromov V.E., Volkov K.V., Ivanov Yu.F., Morozov K.V., Konovalov S.V., Alsaraeva K.V. Struktura, fazovyi sostav i defektnaya substruktura rel'sov vysshei kategorii kachestva [Phase composition and defective substructure of rails of the highest quality category]. Izv. vuz. Fizika [Russian Physics Journal], 2014, No. 2, pp. 72 – 76.

10. Gromov V.E., Volkov K.V., Ivanov Yu.F., Yur'ev A.B., Konovalov S.V., Morozov K.V. Formirovanie tonkoi struktury v rel'sakh nizkotemperaturnoi nadezhnosti [Formation of a fine structure in rails of low-temperature reliability]. Problemy chernoi metallurgii i materialovedeniya [Problems of ferrous metallurgy and materials science], 2013, No. 4, pp. 61 – 68.

11. Balanovskii A.E., Grechneva M.V., Gyui V.V. Issledovanie struktury rel'sovoi stali posle plazmennogo poverkhnostnogo uprochneniya [Investigation of the structure of rail steel after plasma surface hardening]. Uprochnyayushchie tekhnologii i pokrytiya [Strengthening Technologies and Coating], 2015, No. 11 (131), pp. 23-32.

12. Medvedev S.I., Nezhivlyak A.E., Grechneva M.V., Balanovskii A.E., Ivakin V.L. Opredelenie optimal'nykh rezhimov plazmennogo uprochneniya bokovoi poverkhnost rel'sa na opytnoi ustanovke PUR-1 [Determination of optimal regimes of plasma hardening of the lateral surface of a rail on the pilot unit PUR-1]. Svarochnoe proizvodstvo, 2014, No. 8, pp. 28-36.

13. Kargapoltsev S.K., Shastin V.I., Gozbenko V.E., Livshits A.V. and Filippenko N.G. Laser Alloying of Wear Surfaces with Metal Components. International Journal of Applied Engineering Research (IJAER), Volume 12, Number 17 (2017), pp. 6499-6503.

14. Shastin V.I., Kargapoltsev S.K., Gozbenko V.E., Livshits A.V. and Filippenko N.G. Results of the Complex Studies of Microstruc-tural, Physical and Mechanical Properties of Engineering Materials Using Innovative Methods. International Journal of Applied Engi-neering Research (IJAER), Volume 12, Number 24 (2017), pp. 15269-15272.