Дата поступления: 
Номер журнала (Том): 


Файл статьи: 

An identification problem is one of the fundamental ones in the automatic control theory. This is because the actual values of the parameters of technical systems’ elements always differ from the calculated ones adopted in the design due to a number of factors. Therefore, efficiency of the developed control system for the controllable object greatly depends on the accuracy of the process of parametric identification of the object’s model. In this article a new algorithm for searching the values of identifiable parameters of controllable dynamic models representing themselves as a system of nonlinear non-stationary ordinary differential equations of the normal Cauchy form has been proposed. A software-based algorithm for the parametric identification has been implemented using the mathematical apparatus of the problem of moments. To verify the efficiency of the proposed algorithm, the process of parametric identification of a nonlinear non-stationary controllable dynamic model of the second order has been studied. Numerical experiment has shown that the proposed algorithm is efficient and allows very accurate estimations of identifiable stationary and non-stationary parameters of nonlinear models of controllable dynamic systems.

Список цитируемой литературы: 

1. Deich A.M. Metody identifikatsii dinamicheskikh ob"ektov [Methods for identifying dynamic objects]. Moscow: Energiya Publ., 1979, 240 p.

2. Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal'noe upravlenie [Optimal control]. Moscow: Nauka Publ,, 1979, 430 p.

3. Gel'fand I.M., Fomin S.V. Variatsionnoe ischislenie [The calculus of variations]. Moscow: Fizmatgiz Publ., 1961, 228 p.

4. Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii i funktsional'nogo analiza [Elements of the theory of functions and functional analysis]. 7th ed., Moscow: Fizmatlit Publ., 2004, 572 p.

5. Kantorovich L.V., Akilov G.P. Funktsional'nyi analiz [Functional analysis]. Moscow: Nauka Publ., 1977, 744 p.

6. Banakh S. Teoriya lineinykh operatsii [The theory of linear operations]. Izhevsk: R&C Dynamics Publ., 2001, 272 p.

7. Krasovskii N.N. Teoriya upravleniya dvizheniem [Motion Control Theory]. Moscow: Nauka Publ., 1968, 476 p.

8. Kneller D. V. Razrabotka metodov identifikatsii i upravleniya na osnove apparata problemy momentov: dis. ...  kand. tekhn. nauk : 05.13.01. - Sistemnyi analiz, upravlenie i obrabotka informatsii (po otraslyam) [Development of methods of identification and control based on the apparatus of the problem of moments: Ph.D. (Engineering) thesis: 05.13.01. - System analysis, management and processing of information (by industry)]. Moscow, 1993, 211 p.

9. Zade L., Dezoer Ch. Teoriya lineinykh sistem. Metod prostranstva sostoyanii [The theory of linear systems. State space method]. Moscow: Nauka Publ., 1970, 704 p.

10. Dmitriev A.V., Druzhinin E.I.  K teorii nelineinykh kraevykh zadach upravlyaemykh  sistem – V kn.: Differentsial'nye  uravneniya  i  chislennye  metody [On the theory of nonlinear boundary value problems of controllable systems – In the book: Differential equations and numerical methods].  Novosibirsk:  Nauka. Sib. Otdelenie Publ., 1986, pp. 179–87.

11. Bellman R., Kalaba R. Kvazilinearizatsiya i nelineinye kraevye zadachi [Quasilinearization and nonlinear boundary value problems]. Moscow: Mir, 1968, 186 p.

12. Moiseev N. N. Elementy teorii optimal'nykh system [Elements of the theory of optimal systems]. Moscow: Nauka Publ., 1975, 526 p.

13. Pontryagin L. S. Differentsial'nye uravneniya i ikh prilozheniya [Differential equations and their applications]. Moscow: Nauka Publ., 1988, 208 p.

14. Gudkov V. V., Klokov Yu. A., Lepin A. Ya., Ponomarev V. D. Dvukhtochechnye kraevye zadachi dlya obyknovennykh differentsial'nykh uravnenii [Two-point boundary value problems for ordinary differential equations]. Riga: Latvian state university Publ., 1973, 135 p.

15. Lions J. L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris, Dunod, 1969 (Russ. ed.: Lions Zh. L. Nekotorye metody resheniya nelineinykh kraevykh zadach. Moscow: Mir Publ., 1972, 588 p.).