REMOVAL OF BURRS FROM THE SURFACE OF PARTS OF SWITCHING EQUIPMENT IN A HIGH-INTENSITY ULTRASOUND FIELD

Дата поступления: 
18.03.2019
Библиографическое описание статьи: 

Permyakov A. G., Shastin V. I., Kargapol’tsev S. K., Livshits A. V., Lgalov V. V. Udalenie zausentsev s poverkhnosti detalei kommutatsionnogo oborudovaniya v vysokointensivnom ul'trazvukovom pole [Removal of burrs from the surface of parts of switching equipment in a high-intensity ultrasonic field]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 62, No. 2, pp. 33–40. DOI: 10.26731/1813-9108.2019.2(62).33–40

Год: 
2019
Номер журнала (Том): 
УДК: 
621.8.034
DOI: 

10.26731/1813-9108.2019.2(62).33–40

Файл статьи: 
Страницы: 
33
40
Аннотация: 

The article focuses on topical issues of studying the process of cavitational removal of burrs from the surface of small-size parts of switching equipment.  The purpose of the study is to develop a method for tratment of parts in a liquid medium when high-intensity ultrasonic vibrations are excited and their effects on the object of study are evaluated. A methodology and laboratory equipment for experimental research has been proposed and developed. The authors have identified the most functional and practically significant factors that influence the activity of the treatment process to optimize it, which make it possible to multiply the treatment efficiency. Possible options for processing parts from various materials most widely used in switching equipment products are considered. The effect of excessive hydrostatic pressure and activating additives into the working environment, in the form of abrasive materials and chemically active components, was investigated.  Technological recommendations are formulated to remove burrs from inaccessible internal surfaces, including intersecting channels of small diameter, and dulling sharp edges.  The article provides the description of the laboratory installation, on which there were experiments conducted to assess the influence of various factors on the deburring process. The results of a series of experiments, which allowed identifying the most effective composition of the working environment for various materials.  The preliminary experimental data obtained in the framework of this work make it possible to outline ways for further research in this direction and for introducing a deburring technology into production.

Список цитируемой литературы: 
  1. Rosenberg L.D. (ed.). Moshchnye ul'trazvukovye polya [Powerful ultrasonic fields]. Moscow: Nauka Publ., 1968, p.266.
  2. Suslov A.G. (ed.). Inzheneriya poverkhnosti detalei [Engineering surface parts]. Moscow: Mashinostroenie Publ., 2008. 320 p.: ill.
  3. Suslov A.G., Dalsky A.M. Nauchnye osnovy tekhnologii mashinostroeniya [Scientific basis of engineering technology]. Moscow: Mashinostroenie Publ., 2002. 425с.
  4. Syrotyuk M. G. Akusticheskaya kavitatsiya [Acoustic cavitation]. Moscow: Nauka Publ., 2008, 271 p.
  5. Shastin V.I., Konovalov N.P. Tekhnologicheskoe obespechenie protsessov lazernogo modifitsirovaniya poverkhnostei konstruktsionnykh splavov: monografiya [Technological support of the processes of laser modification of the surfaces of structural alloys: a monograph]. Irkutsk: INRTU Publ., 2016. 164 p.
  6. Suslov A.G., Brown E.D., Vitkevich N.A. et al. Kachestvo mashin: spravochnik [The quality of machines: a guide]. In 2 vols. Vol.1. In Suslov A.G. (ed.). Moscow: Mashinostroenie Publ., 1995, 256 p.
  7. Panov A.P. Ul'trazvukovaya ochistka pretsezionnykh detalei [Ultrasonic cleaning of precision parts]. Moscow: Mashinostroenie Publ., 1984, 88 p.
  8. Abramov O.V., Khorbenko I.G., Shvegla Sh. Ul'trazvukovaya obrabotka materialov [Ultrasonic treatment of materials].  In Abramov O.V. (ed.) Moscow: Mashinostroenie Publ., 1984. 280 p., Il.
  9. Khmelev V.N. et al. Ul'trazvukovye mnogofunktsional'nye i spetsializirovannye apparaty dlya intensifikatsii tekhnologicheskikh protsessov v promyshlennosti, sel'skom i domashnem khozyaistve [Ultrasonic multifunctional and specialized devices for the intensification of technological processes in industry, agriculture and household]. Biysk: Altai state tech. un-ty Publ., 2007. 400 p.
  10. Viten’ko T.N. Gumnitsky Ya.M. Mekhanizm aktiviruyushchego deistviya gidrodinamicheskoi kavitatsii na vodu [The mechanism of the activating effect of hydrodynamic cavitation on water]. Khimiya i tekhnologiya vody [Chemistry and technology of water], 2007. Vol. 29, No. 5. Pp. 422-432.
  11. Shastin V.I., Gorovoy A.M. Sposob opredeleniya kavitatsionnoi iznosostoikosti [The method of determining cavitation durability]. RF Patent No. 2359245; application number is 2007134795; applied 18.09.2007; reg. 20.07.2009.
  12. Fedotkin I.M., Guliy I.S. Kavitatsiya, kavitatsionnaya tekhnika i tekhnologiya, ikh ispol'zovanie v promyshlennosti [Cavitation, cavitation methods and technology, their use in industry]. Part II. Kiev: OKO Publ., 2000. 898 p.
  13. Novitsky B.G. Primenenie akusticheskikh kolebanii v khimiko-tekhnologicheskikh protsessakh [The use of acoustic vibrations in chemical and technological processes]. Moscow: Khimiya Publ., 1983. 192 p.
  14. Shastin V.I., Kargapol’tsev S.K. Kontseptsiyamikrourovnevogo analiza fiziko-mekhanicheskikh svoistv modifitsirovannykh poverkhnostei [The concepts of level analysis of the physical and mechanical properties of modified surfaces]. Sistemy, Metody. Tekhnologii. [Systems, Methods. Technologies]. 2015. No. 2 (26). Pp. 13-17
  15. Sukhinina E.V., Ermakov M.A. Ul'trazvukovoekavitatsionnoe udalenie zausentsev s poverkhnosti malogabaritnykh detalei [Ultrasonic and cavitational removal of burrs from the surface of small parts]. Zhurnal Molodoi uchenyi [‘Young Scientist’ Journal]. Irkutsk: IrGUPS Publ., No.9 (195) 2018. Pp. 53-54.
  16. Shastin V.I., Kargapol’tsev S.K., Gozbenko V.E., Livshits A.V. and Filippenko N.G. Physical Analysis of Physical Engineering and Physical Engineering, International Journal of Applied Engineering Research. Volume 12, Number 24 (2017). Pp. 15269-15272.