Assessment of the risk of derailment of tank cars with various height of the center of gravity of freight when driving along the track with real irregularities in plan and profile

Авторы: 
Дата поступления: 
20.01.2020
Библиографическое описание статьи: 

Tarmaev A. A., Petrov G. I., Sosnov N. Yu. Otsenka opasnosti skhoda s rel'sov vagonov-tsistern s razlichnoi vysotoi tsentra tyazhesti gruza pri dvizhenii po puti s real'nymi nerovnostyami v plane i profile [Assessment of the risk of derailment of tank cars with various height of the center of gravity of freight when driving along the track with real irregularities in plan and profile]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, Vol. 65, No. 1, pp. 182–191. 10.26731/1813-9108.2020.1(65).182-191

Рубрика: 
Год: 
2020
Номер журнала (Том): 
УДК: 
629.463.3:656.222.1
DOI: 

10.26731/1813-9108.2020.1(65).182-191

Файл статьи: 
Страницы: 
182
191
Аннотация: 

The work discusses the numerical (computer) modeling of dynamic processes of interaction of the track and freight wagon having permissible deviations in the content. A serial model of a four-axle tank for gasoline and light oil products is adopted as the base car. The main criteria for dynamic interaction, traffic safety, driving performance are selected and numerical values of indicators are determined. The minimum value of the safety factor of the wheel against derailment, dynamic values of the frame and lateral forces acting on the wheelsets of the cars and the minimum value of the contact forces between the body center plate and the bogie center plate (minimum contact forces) are taken as the criteria determining the safety of movement. The paper justifies the choice of the rational value of the gravity center height, which ensures traffic safety with taking into account the high-speed modes of the rolling stock operation and combinations of permissible deviations in the maintenance of the track and running gears of the vehicles. Based on the results obtained, an analysis is carried out and reasonable recommendations for the identification of influence of the dangerous values of the height of the tank car gravity center on traffic safety indicators and driving performance are developed. The permissible speeds of movement in the height range of the gravity center of the tank boiler are determined.

Список цитируемой литературы: 
  1. Leonenko E.G. Vzaimodeistvie puti i porozhnikh gruzovykh vagonov pri dvizhenii v pryamykh i krivykh uchastkakh puti [The interaction of the track and empty freight cars when driving in straight and curved sections of the track]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019, Vol. 63, No. 4, pp. 148–154. DOI: 10/2673/1813-9108.2019.3(63).148-154.
  2. Kazhaev A.N., Plotkin V.S. Vliyanie vysoty tsentra tyazhesti i massy porozhnikh vagonov na skorost' ikh bezopasnogo dvizheniya [Influence of height of gravitational center and weight of empty freight cars on speed of their safe movement]. Vestnik VNIIZhT [Proceedings of the Railway Research Institute]. 2009, No. 4, pp. 24–26.
  3. Akhmadeeva A.A., Gozbenko V.E., Kargapol’tsev S.K. Vertikal'naya dinamika vagona s uchetom nerovnostei kolei [Vertical dynamics of the railway car with a gauge irregularity being taken into account]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2014, Vol. 23, No. 3, pp. 57–62.
  4. Gozbenko V.E., Akhmadeeva A.A. Vertikal'nye kolebaniya ekipazha s uchetom nerovnostei puti [Vertical oscillations of the carriage with the account of the track irregularities]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2013, Vol. 39, No. 3, pp. 56–59.
  5. Voron O.A., Bulavin Ju.P., Volkov I.V. K voprosu vybora hodovykh chastei dlya perspektivnogo izotermicheskogo podvizhnogo sostava [On the choice of carriage chassis for promising isothermal rolling stock]. Vestnik RGUPS, 2018, No. 4, pp. 63–70.
  6. Zhitkov Yu.B. Komp'yuternoe modelirovanie dinamiki vagona-tsisterny s zhidkim gruzom: diss. ... kand. tekhn. nauk: 05.22.07 [Computer simulation of the dynamics of a tank car with a liquid cargo: a Ph.D. (Engineering) diss.]. Saint Petersburg, St.-Petersburg State Transport University Publ., 2018, 118 p.
  7. Mikheev G.V., Pogorelov D.Yu., Rodikov A.N. Metody modelirovaniya dinamiki zheleznodorozhnykh kolesnykh par s uchetom uprugosti [Methods for wheelset dynamics modeling taking into account elasticity]. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Bryansk State Technical University], 2019, No. 4(77), pp. 40–51. DOI: 10.30987/article_5cb58f50b38371.23941436.
  8. Muginshtein L.A., Romen Yu.S. Vliyanie prodol'nykh sil na opasnost' skhodov porozhnikh vagonov v poezdakh [Influence of longitudinal forces on risk of empty cars derailment in trains]. Vestnik VNIIZhT [Proceedings of the Railway Research Institute]. 2011, No. 3, pp. 3–6.
  9. Romen Yu.S. Faktory, obuslavlivayushchie protsessy vzaimodeistviya v sisteme koleso-rel's  pri dvizhenii poezda v krivykh [Factors Responsible for Wheel – Rail Interaction in Curves]. Vestnik VNIIZhT [Proceedings of the Railway Research Institute], 2015, No. 1, pp. 17–26.
  10. Filippov V.N, Kozlov I.V., Smol'yaninov A.V., Podlesnikov Ya.D. K voprosu obespecheniya bezopasnosti dvizheniya vagonov s uvelichennoi vysotoi tsentra tyazhesti [Regarding the issue of safe operation of cars with increased height of center of gravity]. Transport Urala [Transport of the Urals]. 2013, No. 2(41), pp. 39–43.
  11. Cherkashin Yu.M., Pogorelov D.Yu., Simonov V.A. Vliyanie parametrov ekipazhei i puti na bezopasnost' dvizheniya poezdov [Influence of rolling stock and track parameters on train traffic safety]. Vestnik VNIIZhT [Proceedings of the Railway Research Institute]. 2010, No. 2, pp. 3–9.
  12. An B., Wen J., Wang P., Wang P., Chen R., Xu J. Numerical Investigation into the Effect of Geometric Gap Idealisation on Wheel-Rail Rolling Contact in Presence of Yaw Angle. Mathematical Problems in Engineering,Vol. 2019, pp. 1–14, 2019. DOI: 10.1155/2019/9895267.
  13. Gao X., True H., Li Y. Lateral dynamic features of a railway vehicle. Proc IMechE Part F: J Rail and Rapid Transit. 230(3), pp. 1–15, February 2015. DOI: 10.1177/0954409715572856.
  14. Kuzyshin A., Batig A., Sobolevska J., Kostritsa S., Ursulyak L., Dovhaniuk S. Determing the causes of rolling stock derailment from the track using modern research methods. MATEC Web of Conferences 294, 03004 (2019). DOI: 10.1051/matecconf/201929403004.
  15. Xu L., Zhai W. A three-dimensional dynamic model for train-track interactions. Applied Mathematical Modelling. 76 (2019), pp. 443–465. DOI: 10.1016/j.apm.2019.04.037.