A simulation model of traction power supply system to determine energy indicators in conditions of energy storage system operation

Авторы: 
Дата поступления: 
30.06.2020
Библиографическое описание статьи: 

Nezevak V.L. Imitatsionnaya model' sistemy tyagovogo elektrosnabzheniya dlya opredeleniya energeticheskikh pokazatelei v usloviyakh raboty sistem nakopleniya elektroenergii [Simulation model of the traction power supply system for determining energy indicators in the conditions of operation of power storage systems]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 3(67), pp. 70–80. 10.26731/1813-9108.2020.3(67).70-80

Рубрика: 
Год: 
2020
Номер журнала (Том): 
УДК: 
621.311
DOI: 

10.26731/1813-9108.2020.3(67).70-80

Файл статьи: 
Страницы: 
70
80
Аннотация: 

The article deals with the issues of simulation of the operation of DC traction power supply systems with the use of power storage systems. The development of simulation modeling allows us to study the influence of one or several factors on the performance of the traction power supply system. These factors include weight, technical speed, axle load, regenerative braking, features of the schedule for cargo traffic, etc. Modeling allows one to assess the degree of influence of one or a group of factors on performance indicators such as: current collector voltage, load capacity of power equipment, heating temperature of wires and cables, traction power consumption, energy recovery volume, technical losses, etc. Currently, simulation allows performing a series of calculations to obtain a statistical assessment of the influence of factors on indicators (of performance of the traction power supply system) and also an analytical representation of the obtained dependencies necessary for solving the problems of analysis and forecasting changes in the performance indicators of the traction power supply system. The article presents diagrams of multivariate calculations performed to assess the impact of infrastructure parameters, rolling stock and traffic organization on the performance of traction power supply systems. The addition of equivalent circuits currently used for calculations of traction power supply systems makes it possible to perform most calculations to assess the impact of performance of electric power storage systems on energy indicators and assess their operating conditions. The peculiarity of calculation of the equivalent circuits for traction power supply systems containing electricity storage devices using known methods, in particular, the method of nodal potentials, is the need to take into account their on and off state, determined by power and energy consumption restrictions, the voltage level in the contact overhead system. It is proposed to supplement the existing calculation methods with a calculation algorithm that takes into account the operating conditions of the storage system. The calculation method allows us to evaluate the operating conditions of storage systems with electric traction load, the requirements for their main parameters and the impact on the performance of the traction power supply system.

Список цитируемой литературы: 
  1. Konstantinova Yu.A., Li V.N., Konstantinov A.M. Imitatsionnoe modelirovanie tranzita elektroenergii iz sistemy vneshnego elektrosnabzheniya po tyagovoi seti peremennogo toka [Simulation modeling of the transit of electricity from the external power supply system through the AC traction network] // Vestnik Priamurskogo gosudarstvennogo universiteta im. Sholom-Aleikhem [Sholem Aleichem Bulletin of Amur State University], 2019. No. 4 (37). Pp. 70–76.
  2. Zakaryukin V.P., Kryukov A.V., Avdienko I.M. Modelirovanie sistem tyagovogo elektrosnabzheniya 2×25 kV s koaksial'nymi kabelyami i transformatorami Vudbridzha [Modeling of 2×25 kV traction power supply systems with coaxial cables and Woodbridge transformers] // Izvestiya Transsiba [Journal of Transsib Railway Studies], 2016. No. 2 (26). Pp. 70–78.
  3. Bardushko V.D., Tuigunova A.G., Tabanakov P.V. Voprosy obespecheniya trebuemoi tochnosti modelirovaniya tyagovoi seti [Issues of ensuring the required accuracy of modeling traction network] // Vestnik transporta Povolzh'ya, 2014. No. 2 (44). Pp. 58–66.
  4. Cheremisin V.T., Nezevak V.L. Effektivnost' primeneniya sistem nakopleniya elektroenergii na Moskovskom tsentral'nom kol'tse [The effectiveness of the use of energy storage systems on the Moscow Central Ring] // Mir transporta [World of Transport], 2019. Vol. 17. No. 5 (84). Pp. 58–77.
  5. Cheremisin V.T., Nezevak V.L., Shatokhin A.P. Povyshenie effektivnosti raboty sistemy tyagovogo elektrosnabzheniya s gibridnymi nakopitelyami elektroenergii: monografiya [Improving the efficiency of the traction power supply system with hybrid energy storage devices: a monograph]. Omsk. Omsk State Transport University Publ., 2019. 222 p.
  6. Nezevak V.L., Cheremisin V.T., Shatokhin A.P.  Povyshenie energeticheskoi effektivnosti sistemy tyagovogo elektrosnabzheniya v usloviyakh raboty postov sektsionirovaniya s nakopitelyami elektricheskoi energii [Increasing the energy efficiency of the traction power supply system in the operating conditions of sectioning posts with electric energy storage units] // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering], 2015. Vol. 326. No. 10. Pp. 54–64.
  7. Nezevak V.L. Modelirovanie rezhimov nagruzki na shinakh postov sektsionirovaniya pri rabote v sisteme tyagovogo elektrosnabzheniya nakopitelei elektroenergii [Modeling of load modes on the tires of sectioning posts during operation in the traction power supply system of energy storage units] // Vestnik Rostovskogo gosudarstvennogo universiteta putei soobshcheniya [Vestnik RGUPS], 2017. No. 4 (68). Pp. 159–170.
  8. Nikiforov M.M., Vil'gel'm A.S. Raschet effektivnosti ispol'zovaniya energii rekuperatsii na odnoputnykh i dvukhputnykh uchastkakh zheleznykh dorog postoyannogo i peremennogo toka [Calculation of the efficiency of energy recovery on single-track and double-track sections of DC and AC railways] // Vestnik transporta Povolzh'ya, 2018. No. 2 (68). Pp. 28–37.
  9. Baeva I.A. Metodika rascheta sistemy tyagovogo elektrosnabzheniya postoyannogo toka 3,0 kV pri vvedenii ustroistv regulirovaniya napryazheniya [Methodology for calculating a 3.0 kV DC traction power supply system with the introduction of voltage regulation devices] // Izvestiya Peterburgskogo universiteta putei soobshcheniya [Proceedings of Petersburg Transport University], 2019. Vol. 16. No. 1. Pp. 51–58.
  10. Nezevak V.L. Sovershenstvovanie modeli vliyaniya parametrov grafika dvizheniya poezdov na tyagovoe elektropotreblenie na uchastkakh postoyannogo i peremennogo toka c I i II tipom profilya puti pri pomoshchi regressionnykh modelei i neironnykh setei [Improvement of the model of the influence of the parameters of the train schedule on traction power consumption in the sections of direct and alternating current with I and II type of track profile using regression models and neural networks] // Vestnik transporta Povolzh'ya, 2017. No. 6 (66). Pp. 34–44.
  11. Korn G., Korn T. Mathematical handbook [for scientists and engineers] / McGraw-Hill Book Company: New York. 1968. 832 p.
  12. Cheremisin V.T., Nezevak V.L., Shatokhin A.P. Povyshenie energeticheskoi effektivnosti perevozochnogo protsessa na osnove izmeneniya parametrov grafika dvizheniya poezdov [Increasing the energy efficiency of the transportation process based on changing the parameters of the train schedule]. Omsk, 2019. 250 p.
  13. Gatelyuk O.V., Nesevac V.L., Erbes V.V. Analysis of measurement data in a direct current traction power-supply system with uncontrolled rectifiers / Russian Electrical Engineering, 2019. Vol. 90. No. 2. Pp. 180–186.
  14. Radu P.V., Lewandowski M., Szelag A. On-Board and Wayside Energy Storage Devices Applications in Urban Transport Systems – Case Study Analysis for Power Applications. Energies, 2013. Vol. 13. No. 8. Doi: 10.3390/en13082013.
  15. Pan D., Chen Z., Mei M. Energy efficiency emergence of high-speed train operation and systematic solutions for energy efficiency improvement. SN Applied Sciences, 2020. Vol. 2. No. 5. Doi:10.1007/s42452-020-2692-5.
  16. Cheremisin V.T., Nezevak V.L. Perspektivy primeneniya sistem nakopleniya elektroenergii na Moskovskom tsentral'nom kol'tse [Prospects for the use of energy storage systems in the Moscow Central Ring] // Byulleten' rezul'tatov nauchnykh issledovanii [Bulletin of scientific research results], 2020. No. 2. Pp. 33–44.
  17. Cheremisin V.T., Nezevak V.L., Erbes V.V. Otsenka regulirovaniya napryazheniya na storone vysshego napryazheniya tyagovykh podstantsii v aspekte energeticheskoi effektivnosti [Assessment of voltage regulation on the high voltage side of traction substations in terms of energy efficiency] // Transport Urala [Transport of the Urals], 2017. No. 3 (54). Pp. 75–81.
  18. Vil'gel'm A.S., Nezevak V.L. Sovershenstvovanie sposoba opredeleniya energeticheskikh pokazatelei dvizheniya poezda i sistemy tyagovogo elektrosnabzheniya [Improvement of the method for determining the energy indicators of train movement and traction power supply system] // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika [Bulletin of the South Ural State University. Series: Power Engineering], 2016. Vol. 16. No. 3. Pp. 32–40.
  19. Nezevak V., Shatokhin A. Interaction’s Simulation Modeling of Electric Rolling Stock and Electric Traction System. 2019 International Ural Conference on Electrical Power Engineering (UralCon). 2019. doi:10.1109/uralcon.2019.8877672.
  20. GOST R 57670 – 2017. Sistemy tyagovogo elektrosnabzheniya zheleznoi dorogi [Railroad traction power supply systems]. Moscow: Standartinform Publ., 2017. 46 p.