Modeling of highly structured electromagnetic fields occurring in places of intersection of traction networks and electric power transmission lines

Дата поступления: 
19.09.2020
Библиографическое описание статьи: 

Buyakova N. V., Kryukov A. V., Seredkin D. A. Modelirovanie elektromagnitnykh polei slozhnoi struktury, voznikayushchikh v mestakh peresecheniya tyagovykh setei i linii elektroperedachi [Modeling of highly structured electromagnetic fields occurring in places of intersection of traction networks and electric power transmission lines]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 4 (68), pp. 93–102. – DOI: 10.26731/1813-9108.2020.4(68).93-102

Рубрика: 
Год: 
2020
Номер журнала (Том): 
УДК: 
621.311: 621.331
DOI: 

10.26731/1813-9108.2020.4(68).93-102

Файл статьи: 
Страницы: 
93
102
Аннотация: 

At the intersection of the routes of alternating current electrified railways with high-voltage overhead electric power transmission lines, complex electromagnetic fields arise, which are characterized by increased levels of intensity. Such electromagnetic fields can interfere with the functioning of electronic equipment and telecommunication systems. Besides, there may be a negative impact on personnel serving the railway infrastructure facilities. The article presents the results of computer research conducted in relation to a complex traction network of 25 kV, in parallel with which a 220 kV electric power transmission line passed. The structure of the vehicle included a line with a grounded phase, the wires of which were mounted on the supports of the overhead contact system. The electromagnetic field was simulated at the orthogonal intersection of the described multi-wire traction network with a 500 kV electric power transmission line. Two operational situations were considered: the normal mode of operation of a 220 kV electric power transmission line with a power transmission of 25 + j16 MV·A and a one-phase break at the starting end with the transmission of the same total power. Calculations of electromagnetic field intensities were performed in the Fazonord software package. On the basis on the simulation results, volumetric diagrams are constructed that clearly illustrate the complex structure of the occurring electromagnetic fields. These diagrams will help one to make informed decisions on protecting personnel and electronic equipment (in particular, railway automation and telemechanics devices) from the negative effects of electromagnetic fields. In normal operation, the maximums of the electric field for the considered intersection exceed the permissible values for electrical personnel. Magnetic field intensities are within acceptable limits. When the phase wire of the 220 kV electric power transmission line breaks, an increase in the magnetic field strength is observed for coordinates located on an axis perpendicular to the road route and lying within the range of 0–30 m. The studies were financially supported by a grant from the State Ministry of Education and Science of the Russian Federation on the topic “Improving the quality of electric energy and electromagnetic safety in electric power supply systems of railways equipped with Smart Grid devices by applying methods and means of mathematical modeling on the basis of phase coordinates”.

Список цитируемой литературы: 
  1. Buchholz B.M., Styczynski Z. Smart Grids – Fundamentals and Technologies in Electricity Networks. Springer Heidelberg New York Dordrecht London, 2014. 339 p.
  2. Sidorov A.I., Okrainskaya I.S. Elektromagnitnye polya vblizi elektroustanovok sverkhvysokogo napryazheniya [Electromagnetic fields near electrical installations of extra-high voltage]. Chelyabinsk, 2008. 204 p.
  3. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Elektromagnitnaya bezopasnost' v sistemakh elektrosnabzheniya zheleznykh dorog: modelirovanie i upravlenie [Electromagnetic safety in railway power supply systems: modeling and control]. Angarsk, 2018. 382 p.
  4. Kosarev A.B., Kosarev B.I. Osnovy elektromagnitnoi bezopasnosti sistem elektrosnabzheniya zhd transporta [Fundamentals of electromagnetic safety of railway power supply systems]. Moscow, 2008. 480 p.
  5. Apollonskii S.M., Kalyada T.V., Sindalovskii B.E. Bezopasnost' zhiznedeyatel'nosti cheloveka v elektromagnitnykh polyakh [Human life safety in electromagnetic fields]. St. Petersburg: Polytekhnik Publ., 2006. 263 p.
  6. Apollonskii S.M., Gorskii A.N. Raschety elektromagnitnykh polei [Calculations of electromagnetic fields]. Moscow, 2006. 992 p.
  7. Ustinov A.A. Raschet elektricheskikh polei analiticheskim metodom po mgnovennym znacheniyam [Calculation of electric fields by an analytical method using instantaneous values]. Povyshenie effektivnosti proizvodstva i ispol'zovaniya energii v usloviyakh Sibiri [Increasing the efficiency of energy production and use in Siberia]. Irkutsk, 2005. Pp. 517–525.
  8. Rubtsova N.B., Misrikhanov M.Sh., Sedunov V.N., Tokarskii A.Yu.  Al'ternativnye varianty obespecheniya elektromagnitnoi bezopasnosti linii elektroperedachi [Alternative options for ensuring electromagnetic safety of power lines]. Izv. Samarskogo nauchnogo tsentra RAN [Bulletin of the Samara Scientific Center of the Russian Academy of Sciences], 2012. Vol. 14. No. 5 (3). Pp. 839–845.
  9. Kircher R., Klühspies J., Palka R. et al. Electromagnetic Fields Related to High Speed. Transportation Systems. Transportation Systems and Technology. 2018. No. 4 (2). Pp. 152–166.
  10. Ogunsola A., Mariscotti A. Electromagnetic Compatibility in Railways. London: Springer, 2013, 529 p.
  11. Ogunsola A., Reggiani U., Sandrolini L. Modeling Electromagnetic Fields Propagated from an AC Electrified Railway Using TLM. International Symposium on Electromagnetic Compatibility, EMC’09. Kyoto, 2009. Pp. 567–570.
  12. Frey Sh. Railway Electrification Systems & Engineering. White Word Publications, Delhi 2012. 145 p.
  13. Zakirova A.R., Bukanov Zh.M. Issledovaniya elektromagnitnykh polei na rabochikh mestakh personala, obsluzhivayushchego kontaktnuyu set' [Studies of electromagnetic fields at workplaces of the personnel serving the overhead contact system]. Vestnik Ural'skogo gosudarstvennogo universiteta putei soobshcheniya [Bulletin of the Ural State University of Railway Engineering], 2016. No. 2 (30). Pp. 73–83.
  14. Zakirova A.R. Zashchita elektrotekhnicheskogo personala ot vrednogo vozdeistviya elektromagnitnykh polei [Protection of electrical personnel from the harmful effects of electromagnetic fields]. Ekaterinburg, 2018. 171 p.
  15. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh sistem [Complex asymmetric modes of electrical systems]. Irkutsk, 2005, 273 p.
  16. Zakaryukin V.P., Kryukov A.V. Elektromagnitnaya bezopasnost' v mestakh peresecheniya vysokovol'tnykh LEP i elektrifitsirovannykh zheleznykh dorog [Electromagnetic safety at the intersection of high-voltage electric power transmission lines and electrified railways]. Transportnaya infrastruktura Sibirskogo regiona [Transport infrastructure of the Siberian region], Vol. 1. Irkutsk, 2018. Pp. 641–650.
  17. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Electromagnetic safety in points of overhead power lines and electrified railroads crossing. International Scientific Electric Power Conference – 2019 IOP Conf. Series: Materials Science and Engineering 643 (2019) 012018 IOP Publishing. DOI: 10.1088 / 1757-99X / 643/1/012018.
  18. Buyakova N., Zakarukin V., Kryukov A. Imitative Modeling of Electromagnetic Safety Conditions in Smart Power Supply Systems. Advances in Intelligent Systems Research. Vol. 158. Vth International workshop “Critical infrastructures: contingency management, intelligent, agent-based, cloud computing and cyber security” (IWCI 2018), 2018. Pp. 20–25.
  19. Buyakova N., Zakaryukin V., Kryukov A., Nguyen Tu. Electromagnetic Safety Enhancing in Railway Electric Supply Systems. E3S, Web of Conferences 58, 01006 (2018) RSES 2018. Pp. 1–6.
  20. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Modeling of electrical fields in railway engineering structures. Advances in Engineering Research. Vol. 158. International Conference on Aviamechanical Engineering and Transport (AviaENT 2018). 2018. Pp. 219–225.
  21. Anisimova N.D., Venikov V.A., Ezhov V.V. at al. Primery analiza i raschetov rezhimov elektroperedach, imeyushchikh avtomaticheskoe regulirovanie i upravlenie [Examples of analysis and calculation of power transmission modes with automatic regulation and control]. Moscow, 1967. 297 p.
  22. Ivakin V.N., Magnitskii A.A., Shulga R.N. Primenenie ustanovok tiristorno-upravlyaemoi prodol'noi kompensatsii na liniyakh elektroperedachi peremennogo toka [The use of thyristor-controlled longitudinal compensation plants on alternating current power lines]. Elektrotekhnika, 2006. No. 9. Pp. 42–49.
  23. Shamardin A.O. Issledovanie vliyaniya ustanovki prodol'noi kompensatsii na rezhimy dal'nei elektroperedachi [Investigation of the effect of the installation of longitudinal compensation on the modes of long-distance power transmission]. Sovremennye nauchnye issledovaniya i innovatsii [Modern scientific researches and innovations], 2016. No. 6 (62). Pp. 164–173.
  24. Finochenko T.E. Issledovanie rezhimov raboty i kachestva elektroenergii v liniyakh DPR [Study of operating modes and quality of electricity in the lines of the two wires and rails]. Vestnik RGUPS, 2002. No. 3. Pp. 60–62.