About the methods of reverse traction current influence compensation in railway automation devices

Дата поступления: 
11.10.2019
Библиографическое описание статьи: 

Pul’tyakov A. V., Menaker K. V., Vostrikov M. V. O sposobakh compensatsii vliyaniya obratnogo tyagovogo toka v ustroistvakh zheleznodorozhnoi avtomatiki [About the methods of reverse traction current influence compensation in railway automation devices]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 4 (68), pp. 134–141. – DOI: 10.26731/1813-9108.2020.4(68).134-141

Рубрика: 
Год: 
2020
Номер журнала (Том): 
УДК: 
656.259
DOI: 

10.26731/1813-9108.2020.4(68).134-141

Файл статьи: 
Страницы: 
134
141
Аннотация: 

The article deals with the issues of compensation for the negative impact of reverse traction current on the operation of railway automation devices, in particular, on the operation of electric rail circuits and automatic locomotive signaling. It investigates the causes of the occurrence of reverse traction current asymmetry in rail lengths, analyzes the consequences of its influence on the operation of automation devices and considers ways to solve this problem. One direction shows the improvement and modernization of receiving locomotive devices in order to provide interference compensation and improve the quality of signal filtering at the input of receiving locomotive equipment. If there is an asymmetry of the reverse traction current in the rail lengths, the total magnetic flux in the core of the track impedance bond is non-zero. As a result of this, the voltage of the reverse traction current component in the secondary signal winding is induced, which has a negative impact on the operation of the rail circuit. Therefore, another way to solve this problem, which is relatively simple and easier to implement, is to compensate for interference directly by changing and improving the design of currently operated and newly developed track impedance bonds. Based on the conducted research and taking into account the analysis of the advantages and disadvantages of existing solutions in this area, the authors proposed a device designed to compensate for the magnetic flux of a track impedance bond that occurs when the reverse traction current is asymmetric, which allows one to reduce the total magnetic flux to zero. The proposed method is protected by a patent of the Russian Federation for invention.

Список цитируемой литературы: 

References

  1. Arkatov V.S., Arkatov Yu.V., Kazeev S.V., Obodovskii Yu.V. Rel'sovye tsepi magistral'nykh zheleznykh dorog: Spravochnik. 3-e izdanie, pererab. i dop.  [Track circuits of main railway lines: a handbook. 3rd edition, revised and enlarged]. Moscow: Missiya-M Publ., 2006. 496 p.
  2. Bryleev A.M., Poupe O., Dmitriev V.S. et al. Avtomaticheskaya lokomotivnaya signalizatsiya i avtoregulirovka [Automatic locomotive signaling and autoregulation]. Moscow: Transport Publ., 1981. 320 p.
  3. Shamanov V.I. Pomekhi na apparaturu rel'sovykh tsepei i avtomaticheskoi lokomotivnoi signalizatsii. Sredstva zashchity [Track circuit equipment and automatic locomotive signaling interference. Means of protection]. Moscow: EMC for education on railway transport Publ., 2018. 304 p.
  4. Sheverdin I.N., Shamanov V.I., Trofimov Yu.A., Pul’tyakov A.V. Vliyanie tyazhelovesnykh poezdov na rel'sovye tsepi i ALSN [Influence of heavy trains on rail chains and continuous cab signalling] // Avtomatika, svyaz', informatika [Automation, communication, informatics], 2006. No. 10. Pp. 16–19.
  5. Shamanov V.I., Pul’tyakov A.V., Trofimov Yu.A. Vliyanie uslovii ekspluatatsii na ustoichivost' raboty ALSN [The influence of operating conditions on the stability of the continuous cab signalling operation] // Zheleznodorozhnyi transport [Railway transport], 2009. No. 5. Pp. 46–50.
  6. Ogunsola A., Mariscotti A. Electromagnetic. Compatibility in Railways: Analysis and Management. Berlin: Springer, 2013. 600 p.
  7. Dmitrenko I.E., Alekseev V.M. Vliyanie tyagovogo toka na rabotu rel'sovykh tsepei [Influence of traction current on the work of rail circuits] // Avtomatika, telemekhanika i svyaz' [Automation, telemechanics and communication], 1986. No. 10. Pp. 10–12.
  8. Urtseva V.S., Stadukhina N.V., Menaker K.V. Vliyanie asimmetrii obratnogo tyagovogo toka na rabotu rel'sovykh tsepei [Influence of the asymmetry of the reverse traction current on the operation of rail circuits] // Sovremennye problemy transportnogo kompleksa Rossii [Modern problems of the transport complex of Russia], 2011. Vol. 1. No. 1. Pp. 188–197.
  9. Zasov V.A. Kompensatsiya pomekh v priemnikakh signalov avtomaticheskoi lokomotivnoi signalizatsii [Compensation of interference in receivers of signals of automatic locomotive signaling] // Avtomatika na transporte [Automation in transport], 2019. No. 1. Pp. 32–44.
  10. Skorobogatov M.E. Uzkopolosnyi tsifrovoi fil'tr dlya vydeleniya signalov ALSN v usloviyakh deistviya intensivnykh pomekh [Narrow-band digital filter for isolation of signals of continuous cab signalling in conditions of intense interference] // Transport Urala [Transport of the Urals], 2019. No. 4 (63). Pp. 20–27.
  11. Skorobogatov M.E., Pul’tyakov A.V., Demyanov V.V. Odnopolosnyi tsifrovoi fil'tr dlya avtomaticheskoi lokomotivnoi signalizatsii [A single-band digital filter for automatic locomotive signaling]. Pat. 2727077 Russian Federation: MPK7 B61L 25/06 /; applicant and patentee is Irkutsk State Transport University. No. 2019114631; appl. May 13, 2020; publ. July 17, 2020, Bull. No. 20.
  12. Pul’tyakov A.V., Trofimov Yu.A. Ustroistvo povysheniya elektromagnitnoi sovmestimosti avtomaticheskoi lokomotivnoi signalizatsii s obratnoi tyagovoi set'yu [A device for increasing the electromagnetic compatibility of automatic locomotive signaling with a reverse traction network]. Pat. 2533942 Russian Federation: MPK7 B61L 25/06 /; applicant and patentee is Irkutsk State Transport University. No. 2013109329/11; appl. January 03, 2013; publ. 27 November, 2014, Bull. No. 33.
  13. Shamanov V.I., Pul’tyakov A.V., Trofimov Yu.A. Priemnoe ustroistvo dlya avtomaticheskoi lokomotivnoi signalizatsii [A receiving device for automatic locomotive signaling]. Pat. 59010 Russian Federation: MPK7 B61L 25/06 /; applicant and patentee is IrGUPS. No. 2006124216/22; appl. May 07, 2006 publ. December 10, 2006, Bull. No. 14.
  14. Ofengeim Kh.G., Ofengeim D.Kh., Mekhov V.B., Orlov I.G.  et al. Drossel'-transformator [Impedance bond with secondary winding]. Pat. 116111 Russian Federation: MPK7 B61L 1/08 /; applicants and patent holders are Kh.G. Ofengeim, D.Kh. Ofengeim. No. 2012100056/11; appl. October 01, 2012; publ. May 20, 2012, Bull. No. 14.
  15. Lunev S.A., Khodkevich A.G., Seroshtanov S.S., Dremin V.V. Sdvoennyi drossel'-transformator [Double impedance bond with secondary winding]: Pat. 2616221 Russian Federation: MPK7 B61L 1/08; B61L 23/16 /; applicant and patentee is Omsk State Transport University. No. 2015148903; appl. November 13, 2015; publ. April 13, 2017, Bul. No. 11.
  16. Shevtsova E.Yu. Ustroistvo dlya razmagnichivaniya rel'sovogo drossel'-transformatora [A device for demagnetizing a rail impedance bond with secondary winding]: Pat. 131898 Russian Federation: MPK7 N01F 13/00 /; applicant and patentee is E.Yu. Shevtsova. No. 2013111439/07; appl. March 14, 2013; publ. August 27, 2013, Bull. No. 24.
  17. Abuseridze Z.V. Kompensiruyushchii rel'sovyi drossel'-transformator [Compensating rail impedance bond with secondary winding]: Pat. 137247 Russian Federation: MPK7 B61L 1/00/; applicant and patentee is CJSC SOKB Vector. No. 2013133069/11; appl. July 17, 2013; publ. October 02, 2010, Bull. No. 4.
  18. Menaker K.V., Pul’tyakov A.V., Bushuev E.M., Vostrikov M.V. Putevoi drossel'-transformator s kompensiruyushchim ustroistvom magnitnogo potoka serdechnika [A track impedance bond with a compensating device for the magnetic flux of the core]. Pat. 2731298 Russian Federation: MPK7 B61L 23/16 /; applicant and patentee is Irkutsk State Transport University. No. 2019139492; appl. March 12, 2019; publ. September 01, 2020, Bull. No. 25.