AUTOMATION OF THE PROCESS OF DETERMINING THE ELECTROPHYSICAL PARAMETERS OF THE METAL SURFACE CONTAMINANTS THAT ARE REMOVED BY THE DIELECTRIC HEATING METHOD

Дата поступления: 
19.07.2019
Библиографическое описание статьи: 

Popov A. S., Livshits A. V., Filippenko N. G., Popov S. I., Popov M. S. Avtomatizatsiya protsessa opredeleniya elektrofizicheskikh parametrov krasok i okisnykh zagryaznenii, udalyaemykh s metallicheskikh poverkhnostei metodom dielektricheskogo nagreva [Automation of the process of determining the electrophysical parameters of the metal surface contaminants that are removed by the dielectric heating method]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 63, No. 3, pp. 8–13. DOI: 10.26731/1813-9108.2019.3(63).8–13

Год: 
2019
Номер журнала (Том): 
УДК: 
612.081.2
DOI: 

10.26731/1813-9108.2019.3(63).8–13

Файл статьи: 
Страницы: 
8
13
Аннотация: 

One of the processing steps in the repair and preparation for further processing of the product is its cleaning. The principle of cleaning metal surfaces from paint and oxide contamination by dielectric heating is based on the generation of thermal power in the removed material when exposed to a high frequency electromagnetic field. The process of cleaning metal surfaces in the field of high frequency is a method of increasing this power to the desired value, at which the thermal destruction of the removed material occurs. This power depends on parameters of electromagnetic influence and electro-physical properties of the removed material. It is known that the electro-physical parameters of non-conductive materials such as: tangent absorption angle tgs and relative permittivity e, with increasing temperature, change its value in the direction of growth. This leads to an increase in the energy released in the material when exposed to the electromagnetic field of high frequency. To study the electro-physical parameters of the removed paints and oxide contamination in different frequency ranges, the “VM-560” device was selected. To perform measurements with temperature growth, this device was additionally equipped with: a casing made of heat-resistant material, blow dryer, stepper motor, thermocouples and microcontroller. With that, an algorithm was automated and developed for its control. Thus, an automated system for studying the electro-physical properties of paints and oxide contaminants at varying temperatures was developed.

Список цитируемой литературы: 
  1. Britsyn N.L. Nagrev v elektricheskom pole vysokoi chastoty [Heating in an electric field of high frequency]. Promyshlennoe primenenie tokov vysokoi chastoty [Industrial application of high frequency currents]. Moscow: Mashgiz Publ., 1952, 423 p.
  2. Maznin A.N., Netushil A. V., Paripi E.P. Vysokochastotnyi nagrev dielektrikov i poluprovodnikov [High-frequency heating of dielectrics and semiconductors]. Moscow – Leningrad: Gosenergoizdat Publ., 1950.
  3. Vysokochastotnaya elektrotermiya. Spravochnik pod redaktsiei dok. tekhn. nauk Donskogo A.V. [High frequency electrothermy. A handbook edited by Donskoy A.V. (D. Sc. (Eng.)]. Moscow: Mashinostroenie Publ., 1965. 156 p.
  4. Livshits A. V. Upravlenie tekhnologicheskimi protsessami vysokochastotnoi elektrotermii polimerov [Management of technological processes of high-frequency electrothermal polymers]. Problemy mashinostroeniya i avtomatizatsii [Problems of mechanical engineering and automation], 2015. No. 3. Pp. 120-126.
  5. Livshits A.V., Filippenko N.G., Kargapol'tsev S.K. Vysokochastotnaya obrabotka polimernykh materialov. Organizatsiya sistem upravleniya [High-frequency processing of polymeric materials. Organization of management systems]. Irkutsk: IrGUPS Publ., 2013. 172 p.
  6. Jackson J. D. Classical electrodynamics. John Wiley & Sons, Inc., 1962.
  7. Glukhanov I.P. Fizicheskie osnovy vysokochastotnogo nagreva [Physical basis of high-frequency heating]. 4th ed., revised and enlarged. Leningrad: Mashinostroenie Publ., 1979. 64 p.
  8. Popov S.I. Avtomatizatsiya upravleniya tekhnologicheskimi protsessami vosstanovleniya ekspluatatsionnykh svoistv polimerov : dis. kand. tekh. nauk [Automation of control of technological processes of restoration of operational properties of polymers: Ph.D. (Engineering) diss.]. Irkutsk, 2013. 120 p.
  9. Popov S. I., Livshits A. V., Filippenko N. G., Larchenko A. G. Ustroistvo dlya ochistki metallicheskikh poverkhnostei ot kraski i okisnykh zagryaznenii [Device for cleaning metal surfaces from paint and oxide contaminants]. Utility Model Patent No. 135545. Patent Owner: FGBOU VPO IrGUPS. Registered in the State Register of Utility Models of the Russian Federation 12/20/2013
  10. Landau L.D., Lifshits E.M. Teoreticheskaya fizika elektrodinamika sploshnykh sred [Theoretical physics, electrodynamics of continuous media]. 2nd ed., rev. Moscow: Nauka. Ch. ed. of Phys.-Math. lit., 1982. 621 p. (vol. VIII).
  11. Abrakham M., Bekker R. Teoriya elektrichestva [Electricity theory]. Vol 1. (2nd ed.). Leningrad-Moscow: GONTI Publ., 1939.
  12. Shelyubskii V.I. Indebrom V.L., Primenenie kumetra dlya izmereniya emkosti, dielektricheskoi pronitsaemosti i dielektricheskikh poter' na vysokoi chastote [The use of a meter for measuring capacitance, permittivity and dielectric loss at high frequency]. Zavodskaya laboratoriya [Factory laboratory], No. 6, 1954.
  13. Uderman E.G Izmereniya moshchnosti i ugla poter' pri vysokochastotnom nagreve [Measurements of power and loss of angle during high-frequency heating]. Elektrichestvo [Electricity], 1950, No. 6.
  14. Metaxas A.C. Foundations of electroheat, a unified approach. John Wiley & Sons, 1996.
  15. Izmeritel' dobrotnosti VM560. Instruktsiya po ekspluatatsii [The quality factor meter BM560. User's manual.]. TESLA Brno, nation. enterpr., Brno, ChSSR. Pp. 48–49.