Determining the accuracy of the methodology for calculating the speed before the collision of the vehicle by residual deformations as a result of a traffic accident

Дата поступления: 
24.04.2020
Библиографическое описание статьи: 

Ksenofontova V. A., Kiyashko L. A., Sopin P. K. Opredeleniye tochnosti metodiki rascheta skorosti pered stolknoveniyem transportnogo sredstva po ostatochnym deformatsiyam v rezul'tate dorozhno-transportnogo proisshestviya [Determining the accuracy of the methodology for calculating the speed before the collision of the vehicle by residual deformations as a result of a traffic accident]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 3(67), pp. 59–70. 10.26731/1813-9108.2020.3(67).59-70

Рубрика: 
Год: 
2020
Номер журнала (Том): 
УДК: 
629.023
DOI: 

10.26731/1813-9108.2020.3(67).59-70

Файл статьи: 
Страницы: 
59
70
Аннотация: 

When investigating the circumstances of road traffic accidents, it is important to accurately determine the speeds at which the vehicles were moving in order to determine the collision mechanism. The work is concerned with the assessment of the accuracy of the method for determining the speed of a vehicle before a traffic accident based on the residual deformations of vehicle structural elements. To determine the accuracy of the method, a full-scale experimental observation of residual deformations was carried out. The experimental technique is based on the Kirpichev – Barba – Kick similarity principle. The experimental procedure, the plant used and the samples under study, including both scale models and real elements of the car structure, are described. The experimental plant makes it possible to deform various samples with controlled impact energy and then determine the equivalent energy according to the measured deformations by the displaced volume method. The obtained experimental data are provided in the form of arrays of coordinates of deformed nodes of scale models. The article reflects the results of the theoretical determination of the impact energy spent on deformation of the samples. Experiments were also carried out for real elements of car structure. The amount of absorbed energy was determined by the displaced volume method. To determine the zone of propagation of plastic deformation, a metallographic analysis of the structure of the deformation zone was performed. The analysis of the experimental and calculated values for determining the deformation energy of the samples showed that the method for determining the absorbed energy gives an error of no more than 14%, while increasing the accuracy of measurements of the deformed object makes it possible to increase the accuracy of the result. It is concluded that the method for calculating the speed before a traffic accident on the basis of residual deformations of a vehicle has a high accuracy and represents an instrumental basis for an objective study of the mechanism of a traffic accident.

Список цитируемой литературы: 
  1. V.P. Volkov, V.A. Ksenofontova, V.N. Torlin et al. Sovershenstvovanie metodov avtotekhnicheskoi ekspertizy pri dorozhno-transportnykh proisshestviyakh: monografiya [Improvement of methods of autotechnical expertise in road traffic accidents: a monograph]. Kharkov: Publishing house of KhNADU, 2010. 476 p.
  2. Vetrogon A.A., Yakovenko E.V., Babkin A.V.  Povyshenie tochnosti opredeleniya skorosti pri stolknovenii dvukh avtomobilei [Improving the accuracy of determining the speed in a collision of two cars] // Visnik SevNTU [The Herald of SevNTU]. Sevastopol, 2013. No. 142. Pp. 206–210.
  3. Ablaev A.R. Kriterii effektivnosti oborudovaniya (elementov sistem) [Equipment efficiency criteria (system elements)] // Fundamental'nye i prikladnye problemy tekhniki i tekhnologii [Fundamental and Applied Problems of Engineering and Technology]. Oryol: Turgenev Oryol State University Publ., 2019. No. 4–1 (336). Pp. 59–65. URL: https://elibrary.ru/item.asp?id=39217117pdf (Accessed: November 06, 2019).
  4.  Gol’chevskii V.F., Zhigalov N.Yu., Gol’chevskaya N.Yu. Ekspertnoe issledovanie prochnostnykh svoistv kuzovov transportnykh sredstv, podvergshikhsya konstruktivnym izmeneniyam: monografiya [Expert study of the strength properties of vehicle bodies subjected to structural changes: a monograph]. Irkutsk:  East-Sinerian Institute of Ministry of Internal Affairs of the Russian Federation Publ., 2015. Pp. 56–69.
  5. Kirsanov A.R., Khalizov S.K., Kurdyuk S.A., Ivanov E.O., Ovchinnikov V.A. Optimizatsiya prochnosti karkasa salona avtomobilya pri frontal'nom udare s ispol'zovaniem programmnogo obespecheniya resheniya zadach lineinoi statiki [Optimization of the strength of the car interior frame during frontal impact using the software for solving linear statics problems] // Vestnik MGTU im. N.E. Baumana. Ser. «Priborostroenie». Konstruirovanie i tekhnologiya [Vestnik MGTU im. N.E. Bauman. Ser. “Instrument making”. Design and technology]. Moscow: MSTU Publ., 2005. No. 3 Pp. 119–126. URL: https://cyberleninka.ru/article/n/optimizatsiya–prochnosti–karkasa–salona–avtomobilya–pri–frontalnom–udare–s–ispolzovaniem–programmnogo–obespecheniya–resheniya–zadach (Accessed: November 10, 2019).
  6. Sun L., Lin Y., Sun F. Simulation of restraint system performance upon the occupant`s response during impact // J. Beijing Inst. Technol. 1999. Vol. 8. No. 2. Pp. 207–213.
  7. McNally B. F., Bartlett W., 20th Annual Special Problems in Traffic Crash Reconstruction at the Institute of Police Technology and Management, University of North Florida, Jacksonville, Florida, April 15–19, 2002.
  8. Hiemer M., Barrho J. Observer design for road gradient estimation. Reports in Industrial Information Technology, Vol. 7, Shaker Verlag, Aachen, 2004. Pp. 23–30.
  9. Cliff W. and Moser A. Reconstruction of Twenty Staged Collisions with PC–Crash’s Optimizer, SAE 2001–01–0507, 2001.
  10. Becker T., Reade M., Scurlock B. Simulations of Pedestrian Impact Collisions with Virtual CRASH 3, Accident Reconstruction Journal, 2016. Vol. 26. No. 2. URL: http://arxiv.org/abs/1512.00790.
  11. Nurkhaliesa Balqis Hamzah, Halim Setan and Zulkepli Majid Reconstruction of traffic accident scene using close–range photogrammetry technique // Geoinformation Science Journal, 2010. Vol. 10. No. 1. Pp. 17–37.
  12. Sedov L.I. Metody podobiya i razmernosti v mekhanike [Similarity and dimensional methods in mechanics]. Moscow: Nauka Publ., 1987. 430 p.
  13.  Ksenofontova V.A., Babkin A.V., Torlin V.N. Issledovanie protsessa deformatsii kuzova legkovogo avtomobilya pri naezde na nepodvizhnoe prepyatstvie [Study of the process of deformation of the body of a car when hitting a stationary obstacle] // Sbornik nauchnykh trudov KhGADTU «Avtomobil'nyi transport» [Proceedings of KhADTU “Road transport”]. No. 7–8 (2001). Pp. 36–38.
  14. Storozhev M.V., Popov E.A. Teoriya obrabotki metallov davleniem [Theory of metal forming]. Moscow: Mashinostroenie Publ., 1977.
  15. Polukhin P.I., Gun G.Ya., Galkin A.M. Soprotivlenie plasticheskoi deformatsii metallov i splavov [Resistance to plastic deformation of metals and alloys]. Moscow: Metallurgiya Publ., 1976. 488 p.
  16. Goodier J.N., Timoshenko S. P. Theory of Elasticity. McGraw-Hill Education; 3rd edition, 608 p. [Russ. ed.: Timoshenko S.P., Gud'er Dzh. Teoriya uprugosti. Per. s angl. Moscow: Nauka, 1979]. 325 p.
  17. Ksenofontova V.A. Razrabotka metoda opredeleniya skorosti transportnogo sredstva do stolknoveniya v rezul'tate DTP: dis. … kand. tekhn. nauk [Development of a method for determining the speed of a vehicle before a collision as a result of an accident: Ph.D. (Engineering) diss.] (05.22.20). KhNADU Publ., Kharkov, 2003. 226 p.