Receipt date: 
Journal number: 
621.311, 621.331


Article File: 

Most works on electric power quality and the existing standard documents consider only amplitude values of inverse and zero sequence voltage non-symmetry coefficients, making it possible to define admissibility of thermal impact on the electric equipment. The most complete description of the non-symmetrical mode can be obtained using non-symmetry amplitude and phase parameters.

The article presents the results of computer modeling technologies that allow defining amplitude and phase characteristics of non-symmetry. These technologies are implemented in the software package Fazonord on the basis of phase coordinates methods of definition of railway power supply system modes.

The results of non-symmetrical modes definition in standard 25 and 2х25 kV railway power systems are presented as an example. The modeling is carried out in two options: during the movement of one cargo train weighing 3200 t in the odd direction; during the movement of 6 cargo trains weighing 3200 t in the odd direction and the same number of trains weighing 6000 t in the even direction.

The obtained results have allowed making the following conclusions:

– the technique and the software package Fazonord make it possible to obtain exhaustive information on dynamics of processes characterizing non-symmetry;

– together with complex indicators responding to the voltage non-symmetry, similar parameters for the currents flowing on the railway power supply system elements can be determined;

– the 2х25 kV system is characterized by a larger variance compared  to the 25 kV system, but negative sequence coefficient module has a smaller variance in 25 kV then in 2x25 kV system.

The offered approach is universal and can be used for non-symmetrical modes research in the specific and perspective traction power supply systems.

List of references: 

1.      Silaev M.A., Tul'skii V.N., Kartashev I.I. Vliyanie bystrykh izmenenii nesimmetrii napryazhenii na vibratsionnye kharakteristiki asinkhronnykh dvigatelei [Influence of rapid changes in voltage asymmetry on the vibration characteristics of induction motors]. Elektrotekhnika, No. 6, 2014, pp. 43-50.

2.      Silaev M.A., Tul'skii V.N. Issledovanie peremezhayushcheisya nesimmetrii napryazheniya i razrabotka sposoba ee izmereniya [Investigation of intermittent voltage asymmetry and development of a method for its measurement]. Upravlenie kachestvom elektricheskoi energii []. Moscow: Raduga Publ., 2014, pp. 305-312.

3.      Tserazov A.L. Issledovanie vliyaniya nesimmetrii i nesinusoidal'nosti napryazheniya na rabotu trekhfaznykh asinkhronnykh dvigatelei s korotkozamknutym rotorom. Diss. … kand. tekhn. nauk [Investigation of the influence of unbalance and non-sinusoidal voltage on the operation of three-phase asynchronous motors with a squirrel-cage rotor. Ph.D. (Engineering) thesis.]. Moscow, 1962, 182 p.

4.      Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh system [Complexly asymmetric modes of electrical systems]. Irkutsk: Irkut. un-ty Publ., 2005, 273 p.

5.      Kryukov A.V., Zakaryukin V.P. Metody sovmestnogo modelirovaniya sistem tyagovogo i vneshnego elektrosnabzheniya zheleznykh dorog peremennogo toka [Methods of joint modeling of traction and external power supply systems for AC railways]. Irkutsk: IrGUPS Publ., 2011. 170 p.

6.      Zakaryukin V.P., Kryukov A.V. Multifunctional Mathematical Models of Railway Electric Systems. Innovation & Sustainability of Modern Railway – Proceedings of ISMR’2008. Beijing: China Railway Publishing House, 2008, pp. 504-508.

7.      Steimel A. Electric traction motive power and energy supply. Basics and practical experience. Munchen: Oldenbourg Indus-trieverlag, 2008, 334 p.

8.      Biesenack H., Braun E., George G. et al. Energieversorgung elektrischer bannen. Wiesbaden: B.G. Teubner Verlag, 2006, 732 p.

9.      Vasilyanskii A.M., Mamoshin R.R., Yakimov G.B. Sovershenstvovanie sistemy tyagovogo elektrosnabzheniya zheleznykh dorog, elektrifitsirovannykh na peremennom toke 27,5 kV, 50 Gts [Improvement of traction power supply system for railways electrified at alternating current 27.5 kV, 50 Hz]. Zheleznye dorogi mira [Railways of the World], No. 8, 2002, pp. 40-46.

10.    Bardushko V.D., Zakaryukin V.P., Kryukov A.V. Printsipy postroeniya sistem elektrosnabzheniya zheleznykh dorog [Principles of construction of power supply systems for railways]. Moscow: Teplotekhnik Publ., 2014, 166 p.

11.    Kotel'nikov A.V. Elektrifikatsiya zheleznykh dorog: mirovye tendentsii i perspektivy [Electrification of railways: world trends and prospects]. Moscow: Intekst Publ., 2002, 104 p.

12.    Zakaryukin V.P., Kryukov A.V. Elektromagnitnaya bezopasnost' tyagovykh setei povyshennogo napryazheniya [Electromagnetic safety of traction networks of increased voltage]. Elektrobezopasnost' [Electrical safety], No. 4, 2016, pp. 4-11.

13.    Buyakova N.V., Zakaryukin V.P., Kryukov A.V., Nguen Ty. Elektromagnitnaya bezopasnost' v tyagovykh setyakh s rasshcheplennymi ekra-niruyushchimi i usilivayushchimi provodami [Electromagnetic safety in traction networks with split shielding and amplifying wires]. Vestnik RGUPS, No. 4(68), 2017, pp. 142-152.

14.    Zakaryukin V., Kryukov A., Cherepanov A. Intelligent Traction Power Supply System. International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport. EMMFT 2017. Advances in Intelligent Systems and Computing, Vol 692. Springer, Cham, pp. 91-99.

15.    Zakaryukin V.P., Kryukov A.V., Avdienko I.M. Modelirovanie sistem tyagovogo elektrosnabzheniya, osnashchennykh simmetriruyushchimi transformatorami [Modeling of traction power supply systems equipped with balancing transformers]. Moscow; Berlin: Direkt-Media Publ., 2017, 168 p.

16.    Zakaryukin V.P., Kryukov A. V. Modelirovanie elektromagnitnykh polei v tyagovykh setyakh, oborudovannykh otsasyvayushchimi transformatorami [Modeling of electromagnetic fields in traction networks equipped with negative boosting transformers]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], Vol. 21, No. 8, 2017, pp. 92 -102.

17.    Shidlovskii A.K., Kuznetsov V.G. Povyshenie kachestva energii v elektricheskikh setyakh [Increase the quality of energy in electrical networks]. Kiev: Naukova dumka Publ., 1985, 268 p.

18.    Multiple SVC installations for traction load balancing in Central Queensland. ABB Application Note A02-0134 E, 2011-03.

19.    Amar Alsulami. Balancing Asymmetrical Load Using a Static Var Compensator. Master of Science Thesis. Department of Energy and Environment Division of Electric Power Engineering, Chalmers University of Technology, Goteborg, Sweden 2014, 90 p.

20.    Pana A. Active Load Balancing in a Three-Phase Network by Reactive Power Compensation, Power Quality and Monitoring, Analysis and Enhancement. In Dr. Ahmed Zobaa (ed.), 2011. ISBN: 978-953-307-330-9, InTech, Available from: Access date: 05.03.2018.

21.    Saied M. Mohamed. Circuit for Balancing Harmonic-Polluted Three-Phase Networks. Electrical Power Quality and Utilisation, Journal Vol. XVI, No. 1, 2013, pp. 19-24.