Application of a shunting discharge arm based on fully controllable semiconductor devices in an ac-wire dc-motor electric locomotive power circuit in a regenerative braking mode

Receipt date: 
Bibliographic description of the article: 

Barinov I. A. Primenenie shuntiruyushchego razryadnogo plecha na baze polnost'yu upravlyaemykh poluprovodnikovykh priborov v silovoi skheme elektrovoza peremennogo toka v rezhime rekuperativnogo tormozheniya [Application of a shunting discharge arm based on fully controllable semiconductor devices in an AC-wire DC-motor electric locomotive power circuit in a regenerative braking mode]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 4 (68), pp. 165–175. – DOI: 10.26731/1813-9108.2020.4(68).165-175

Journal number: 


Article File: 

The article presents results of analytical-and-mathematical research into application of a shunting discharge arm based on modern fully controllable semiconductor devices in order to optimize power converter thyristor arms control and AC locomotive  electric energy efficiency increase. The discharge arm is installed into the power circuit’s DC subcircuit in parallel with the cathode and anode buses of the converter and acts as an alternative current route, allowing one to implement a swift turn-off of thyristor arms at the end of their work cycle. The Introduction gives a description to the problem in question. The first section of the article offers a brief history reference citing predecessor engineering solutions reflected in domestic patent publications. Achieved results are listed, as well as drawbacks caused by objective technical limitations. The second section describes the suggested converter thyristor arms control method defined by application of an IGBT-based discharge arm, demonstrates electromagnetic processes occurring in the electric locomotive power circuit in a form of an analytical diagram and presents the complete chart of control impulses for the new control algorithm. The third section visualizes results of mathematical simulation of the engineering solution in a comprehensive “traction substation – overhead line – electric locomotive” system in MATLAB Simulink environment. Simulation results support the conclusion of the full working capability of the suggested control method, as well as its achievement of significant increase in the locomotive’s regenerative braking mode power factor within full range of voltage (i. e. speed) regulation.

List of references: 
  1. Melnichenko O.V. Povyshenie energeticheskoy effektivnosty tyagovyh elektroprivodov elektrovozov peremennogo toka [AC-Fed Electric Locomotive Traction Drive Energy Efficiency Increase]. Doctoral dissertation / O.V. Melnichenko // Khabarovsk, 2015. 392 p.
  2. Vlasyevskiy S.V. Povyshenie effektivnosty vypryamitelno-invertornyh preobrazovateley elektrovozov peremennogo toka s rekuperativnym tormozheniem [Reversible Power Converters Efficiency Increase of Electric Locomotives With Regenerative Braking]. Doctoral dissertation / S.V. Vlasyevskiy // Khabarovsk, 2001. 396 p.
  3. Tikhmenev B.N. Elektrovozy peremennogo toka s tiristornymy preobrazovatelyamy [Alternating Current Electric Locomotives With Thyristor Converters] / B.N. Tikhmenev, V.A. Kuchumov // Transport Publishing House, Moscow, 1988. 311 p.
  4. Savoskin A.N. O kachestve processov regulirovaniya invertora elektrovoza [On Quality of Electric Locomotive Invertor Regulation Processes] / A.N. Savoskin, V.A. Golovanov, V.E. Koval, A.A. Efremov // Herald of VNIIZHT, 1981. Iss. 8. Pp. 24.
  5. Savoskin A.N. Povyshenie koefficienta moshnosty elektrovoza peremennogo toka [Increasing AC-Wire DC-Motor Electric Locomotive Power Factor] / A.N. Savoskin, Yu.M. Kulinich, R.P. Grinberg // Elektrotekhnika [Electrical Engineering], 2002. Iss. 5. Pp. 11–16.
  6. Vlasyevskiy S.V. Effektivnost y problemy primeneniya rekuperativnogo tormozheniya na elektrovozakh peremennogo toka [Efficiency and Issues of AC Electric Locomotive Regenerative Braking Application] / S.V. Vlasyevskiy, V.V. Kravchuk // Herald of VELNII, 2005. Iss. 2. Pp. 147–158.
  7. Tikhmenev B.N. Elektrovozy peremennogo toka so staticheskimy preobrazovatelyamy [Alternating Current Electric Locomotives With Static Converters] / B.N. Tikhmenev // Transzheldorizdat, Moscow, 1958. 268 p.
  8. Patent No. RU2322749 / S.V. Vlasyevskiy, A.K. Babichuk, O.V. Melnichenko // Patent holder: Far Eastern State Transport University. Applied 20 November 2006, published 20 April 2008. Moscow, Russia: Rospatent, 2006.
  9. Patent No. RU2418354 / S.V. Vlasyevskiy, E.V. Bunyaeva, V.G. Skorik, D.S. Fokin // Patent holder: Far Eastern State Transport University. Applied 7 April 2010, published 10 May 2011. Moscow, Russia: Rospatent, 2010.
  10. Patent No. RU2737075 / S.A. Boginskiy, O.V. Melnichenko, A.Yu. Portnoy, A.O. Linkov, S.G. Shramko, I.A. Barinov // Patent holder: Irkutsk State Transport University. Applied 26 March 2020, published 24 November 2020. Moscow, Russia: Rospatent, 2020.
  11. Patent No. RU2561913 / S.V. Vlasyevskiy, V.V. Semchenko, O.V. Melnichenko // Patent holder: Vlasyevskiy S.V. Applied 18 April 2014, published 10 September 2015. Moscow, Russia: Rospatent, 2014.
  12. Yang Sh. An Industry-Based Survey of Reliability in Power Electronic Converters / Sh. Yang, A. Bryant, Ph. Mawby, D. Xiang, L. Ran, P. Tavner // IEEE Transactions on Industry Applications, May – June 2011. Vol. 47. Iss. 3, 14 March 2011. Pp. 1441–1451.
  13. Ciappa M. Lifetime Prediction of IGBT Modules for Traction Applications / M. Ciappa, W. Fichtner // 2000 IEEE International Reliability Physics Symposium Proceedings (38th Annual), 10–13 April 2000. Pp. 210–216.
  14. Linkov A.O. Matematicheskoe modelirovanie raboty elektrovoza s novoy vypryamitelnoy ustanovkoy vozbuzhdeniya na IGBT-tranzistorakh [Mathematical Modelling of Electric Locomotive Operation With a New IGBT-Based Rectifier Excitation Device] / A.O. Linkov, O.V. Melnichenko, A.Yu. Portnoy, S.G. Shramko // Nauka i tekhnika transporta [Transport Science and Technology], 2013. Iss. 2. Pp. 21–28.
  15. Ustinov R.I. Modelirovanie avariynyh processov vypryamitelno-invertornykh preobrazovateley elektrovoza pri propuske upravlyayushih impulsov [Modelling of Electric Locomotive Reversible Power Converter Emergency Processes Due To Control Impulses Omission] / R.I. Ustinov, O.V. Melnichenko // Herald of INRTU, 2018. Iss. 3. Pp. 244–254.
  16. Tomilov V.S. Proposals for Introduction of Modern Power Semiconductor Devices Into Converter-Fed Commutator Motor Locomotives of Russian Railways / V.S. Tomilov, T.V. Volchek, I.A. Barinov // 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 9 June 2020.
  17. Patent No. RU2689786 / I.A. Barinov, S.V. Vlasyevskiy, Yu.V. Gazizov, A.O. Linkov, O.V. Melnichenko, A.Yu. Portnoy, S.G. Shramko, D.A. Yagovkin // Patent holder: LLC “Transport Progressive Technologies”. Applied 13 June 2018, published 29 May 2019. Moscow, Russia: Rospatent, 2018.
  18. Patent No. RU2728891 / I.A. Barinov, O.V. Melnichenko, A.Yu. Portnoy, A.O. Linkov, S.G. Shramko, D.A. Yagovkin, V.S. Tomilov // Patent holder: Irkutsk State Transport University. Applied 16 December 2019, published 31 July 2020. Moscow, Russia: Rospatent, 2019.