DEFINITION OF THE HEAT TRANSFER COEFFICIENT IN THE PRODUCTION OF LOW-RIGIDITY PARTS

Receipt date: 
18.05.2018
Year: 
2018
Journal number: 
УДК: 
621.78:519.6
DOI: 

10.26731/1813-9108.2018.2(58).34-40

Article File: 
Pages: 
34
40
Abstract: 

The article considers the problems of determining residual stresses. Based on the work of the predecessors, it was concluded that there is a need for a calculation method for determining thermal residual stresses, since the existing non-destructive methods have low accuracy, while destructive methods increase the cost of producing low-rigidity parts and are not applicable at the design stage. The existing calculation methods of determination have a narrow specificity, therefore, in the work the residual stresses arising during heat treatment are studied in more detail, for calculation of which the non-stationary thermal field calculation results are needed. The main problem in the calculation of the thermal field is the determination of the heat transfer coefficient, since the values ​​of the heat transfer coefficient depend on a significant number of non-stationary parameters, the change of which is difficult to predict. The determination of the heat transfer coefficient is complicated by the speed of the processes occurring during the heat treatment and by the significant number of factors. The values of the coefficient depend on these factors. Based on the literature review, it is difficult to calculate the heat transfer coefficient. Therefore, a calculation and experimental model of the thermal field and an algorithm that allows calculating the heat transfer coefficient by parametric identification using the experimental cooling curves are proposed. The suggested calculation-and-experimental model and the algorithm of parametric identification made it possible to obtain the dependence of the heat transfer coefficient on the surface temperature of the investigated workpiece. The obtained dependence of the heat transfer coefficient on the surface temperature of the workpiece has several stages of change. It is also important to note that the reference points of the obtained dependence are in good agreement with the existing liquid boiling regimes. Based on the dependence, the nonstationary thermal field and the epures of the thermal residual stresses are calculated, which have an error of no more than 5 %.

List of references: 

1. Livshits A. V. Prognozirovanie lokal'nykh ostatochnykh deformatsii pri proektirovanii tekhnologicheskogo protsessa izgo-tovleniya malozhestkikh detalei: Diss. … kand. tekhn. nauk [Forecasting of local residual deformations in the design of the technological process of manufacturing low-rigidity parts. Ph.D. (Engineering) thesis]. Irkutsk: 1999, 185 p.

2. Kargapol'tsev S. K. Upravlenie deformirovannym sostoyaniem malozhestkikh detalei tipa plastin s podkrepleniem na osnove ego prognozirovaniya pri proektirovanii tekhnologicheskogo protsessa: Diss. … dokt. tekhn. nauk [Management of the deformed state of pedestal details of the plate type with reinforcement on the basis of its prediction in the design of the technological process.  D. Sci. (Engineering) thesis]. Irkutsk: 2000, 322 p.

3. Aleksandrov A.A. Prognozirovanie dinamiki okhlazhdeniya zagotovok iz alyuminievykh splavov pri termoobrabotke [Forecasting the dynamics of cooling of billets from aluminum alloys during heat treatment]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2014, No.1, pp. 140-145.

4. Aleksandrov A.A., Livshits A.V. Vliyanie rastyazheniya zagotovok na uroven' termicheskikh ostatochnykh napryazhenii [Effect of stretching of blanks on the level of thermal residual stresses]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2016, No.4, pp. 66-69.

5. Kargapol'tsev S.K., Nekrytyi M.V. Sposob pravki tonkostennykh obolochek [The method of straightening thin-walled shells]. Patent for invention RUS 2141390 May 26, 1998.

6. Mirzaev D.A., Shaburov A.D., Chernyavskii A.O. Analiz termouprugikh napryazhenii v pokovkakh s uchetom effekta relaksatsii [Analysis of thermoelastic stresses in forgings taking into account the relaxation effect]. Vestnik YuUrGU. Seriya «Metallurgiya» [Bulletin of the South Ural State University. Series ‘Metallurgy’], 2014, No.3, pp. 40-47.

7. Lebskii S.L., Lebskii D.S. Vliyanie parametrov tekhnologicheskogo protsessa drobenaklepa na epyuru ostatochnykh napryazhenii [Influence of the parameters of the technological process of a fractional break on the residual stresses plot]. Izvestiya VolgGTU [VolgSTU Bulletin], 2013, No.15(118), pp. 61-64.

8. Makeev S.A., Kolmakov D.M. Modelirovanie ostatochnykh napryazhenii v tonkostennom prokate trapetsievidnogo secheniya [Modeling of residual stresses in thin-walled rolled trapezoid section] Omskii nauchnyi vestnik [Omsk scientific bulletin], 2014, No.1(127), pp. 69-73.

9. Kravchenko I.N. , Sel'dyakov V.V., Bobryashov E.M., Puzryakov A.F. Matematicheskoe modelirovanie protsessa razvitiya ostatochnykh napryazhenii pri formirovanii plazmennykh pokrytii [Mathematical modeling of the process of development of residual stresses in the formation of plasma coatings]. Sovremennye naukoemkie tekhnologii [Modern high technologies], 2013, No.11, pp. 77-80.

10. Karatushin S.I., Spiridonov D.V., Pleshanova Yu.A. Modelirovanie ostatochnykh napryazhenii pri tsementatsii [Modeling of residual stresses at carbonization]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2012, No.3, pp. 65-68.

11. Kuznetsov G.V., Sheremet M.A. Raznostnye metody resheniya zadach teploprovodnosti [Difference methods for solving heat conduction problems]. Tomsk: TPU Publ., 2007, 172 p.

12. Bachurin A.S., Bobin K.N., Matveev K.A., Kurlaev N.V. Chislennoe modelirovanie vliyaniya pripuska na velichinu ostatochnykh napryazhenii v detalyakh letatel'nykh apparatov posle zakalki [Numerical simulation of the allowance effect on residual stresses in aircraft parts after quenching]. Vestnik Sibirskogo gosudarstvennogo aero-kosmicheskogo universiteta im. akademika M.F. Reshetneva [Bulletin of the Reshetnev Siberian State Aerospace University], 2013, No.3, pp. 123-128.

13. Ampilogov A.Yu. Prognozirovanie struktury i svoistv stalei v ob"eme izdeliya pri zakalke i otpuske: Diss. … kand. tekhn. nauk [Prediction of the structure and properties of steels in the product volume during quenching and tempering. Ph.D. (Engineering) thesis], Moscow: 2008, 145 p.

14. Primenenie SYSWELD dlya modelirovaniya zakalki v 2D postanovke. Delkam – Ural [Application of SYSWELD for modeling of quenching in 2D setting. Delkam – Ural] [Electronic media]. Access mode: http://www.delcam-ural.ru/cae/tehnologicheskiy_analiz/sysweld_modelirova... .

15. Aleksandrov A.A., Livshits A.V., Filippenko N.G., Popov S.I., Filatova S.N. Ustroistvo dlya opredeleniya koeffitsientov teplootdachi [Device for determining heat transfer coefficients]. Patent for utility model №155337. The patent holder is FSBEI HPE of the Irkutsk State University of Architecture and Civil Engineering. Registered in the State Register of Utility Models of the Russian Federation 10/10/2015.

16. Kargapol'tsev S.K. Minimizatsiya ostatochnykh deformatsii metodom diskretnogo modelirovaniya pri frezerovanii malo-zhestkikh detalei. Diss. … kand. tekhn. nauk [Minimization of residual deformations by the method of discrete modeling when milling low-rigidity parts. Ph.D. (Engineering) thesis]. Irkutsk: 1990, 136 p.

17. Klyuchnikov S.I. Minimizatsiya ostatochnykh deformatsii metodom diskretnogo modelirovaniya pri frezerovanii malozhestkikh detalei. Diss. … kand. tekhn. nauk [Minimization of residual deformations by the method of discrete modeling when milling low-rigidity parts. Ph.D. (Engineering) thesis]. Irkutsk: 1998, 154 p.