Receipt date: 
Bibliographic description of the article: 

Ryabchenok N. L., Alekseeva T. L., Astrakhantsev L. A., Martusov A. L. Energeticheskaya effektivnost’ elektricheskoy tyagi poyezdov [Energy efficiency in railway electric traction]. Sovremennyye tekhnologii. Sistemnyy analiz. Modelirovaniye [Modern Technologies. System Analysis. Modeling], 2019, Vol. 61, No. 1, pp. 144–156. DOI: 10.26731/1813-9108.2019.1(61).144–156

Journal number: 


Article File: 

The volumes, speeds and efficiency of the railroad performance have increased to deliver raw materials and finished products for businesses, as well as to process orders for transit transportation of goods travelling through Russia from countries of Europe and Asia-Pacific. Modern technologies used to drive heavy multiple-unit trains and high-speed traffic have limited capability to solve the problems set; hence, they have a low efficiency level. This article focuses on the assessment of energy efficiency of an electric locomotive with a pulse traction electric motor controller and an electric locomotive with a continuous full use of the overhead system power potential for а train traction. The study provides researchers, designers, developers and engineers with an opportunity to focus on finding solutions that could eliminate the cause of low efficiency in pulse traction motor controllers manufactured both in Russia and abroad. The paper uses a well-known technique to assess the electric traction power efficiency in a traction motor that is applied at educational institutions along with mathematical modelling. The authors offer a new method of evaluating the energy efficiency in railway electric traction that is based on a revised law of conservation of energy in an electromagnetic field. Considering the traction mode and high-speed mode, the electric drive of an electric locomotive with a continuous and full-use of electric potential, the overhead system consumes 39% less current than an electric locomotive with a pulse traction motor controller with power factor being 20.8% higher along with 18.9% higher efficiency. New energy properties correspond to the provisions of fundamental electrical engineering and allow eliminating methodological contradictions in the process of training the future professionals.

List of references: 

1. Maevskii O.A. Energeticheskie kharakteristiki ventil'nykh preobrazovatelei [Energy characteristics of valve converters]. Moscow: Energiya Publ., 1978, 320 p.
2. Zinov'ev G.S. Pryamye metody rascheta energeticheskikh pokazatelei ventil'nykh preobrazovatelei [Direct methods for calculating the energy performance of valve converters]. Novosibirsk: Novosibirsk state university Publ., 1990, 219 p.
3. Demirchan K.S., Neiman L.R., Korovkin N.V. Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical engineering]. St. Peterburg: Piter Publ., 2009. Vol.2, 431 p.
4. Ionkin P.A. (ed.). Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical engineering]. Moscow: Vysshaya shkola Publ., 1976. Vol.1, 544 p.
5. Bessonov L.A. Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical engineering]. Moscow: Vysshaya shkola Publ., 1996, 638 p.
6. Bader M.P. Povyshenie effektivnosti tyagovogo elektrosnabzheniya postoyannogo toka i obespechenie elektromagnitnoi sovmestimosti [Improving the efficiency of DC power supply and ensuring electromagnetic compatibility]. Elektrosnabzhenie i vodopodgotovka [Power supply and water treatment], 2000. No.2, pp. 62-66.
7. Leshchev A.I., Litovchenko V.V., Sorin L.N., Suslova K.N. Elektromagnitnaya sovmestimost' elektropodvizhnogo sostava s tyagovoi set'yu [Electromagnetic compatibility of electric rolling stock with a traction network]. Vestnik Vostochno-ukrainskogo natsional'nogo universiteta [Bulletin of the East-Ukrainian National University], 2002. No.6(52), pp. 34-39.
8. Prasuna P.V., Rama Rao J.V.G., Lakshmi Ch.M. International Journal of Engineering Research and Applications (IJERA), 2013, Vol. 2 (4), pp. 2368-3376.
9. Mohanraj K., Lanya Bersis C., Sekhar S. Power Electronics and Renewable Energy Systems. Proceedings of ICPERES, 2014, pp. 29-38.
10. Jenella S., Radj Kumar V. Power Electronics and Renewable Energy Systems. Proceedings of ICPERES, 2014, pp. 225-236.
11. J. Teigelkotter, D. Sprenger. Moshchnye preobrazovateli na IGBT-tranzistorakh dlya primeneniya na zheleznodorozhnom podvizhnom sostave [Powerful transducers with IGBT transistors for use in railway rolling stock]. Myunkhen: Siemens AG, 2000.
12. Litovchenko V.V. 4qS – chetyrekhkvadrantnyi preobrazovatel' elektrovozov peremennogo toka [4qS is the four-quadrant converter of AC electric locomotives]. Izv. VUZov. Elektromekhanika [News of the universities. Electromechanics], 2000. No.3, pp. 64-73.
13. Umov N.A. Izbrannye sochineniya [Selected Works]. Moscow-Leningrad: Gostekhizdat Publ., 1950. 571 p.
14. Poynting J.H. On the Transfer of Energy in the Electromagnetic Field. Philosactions of the Royal Society. London: 175, 1884, pp. 343-361.
15. Ryabchenok N.L, Alekseeva T.L., Yakobchuk K.P., Astrakhantsev L.A. Utochnennyi zakon sokhraneniya energii [elektronnyi resurs] [Refined energy conservation law], 2015. Access mode. URL: (access date is 17.10.2016).
16. Alekseeva T.L., Ryabchenok N.L. Energosberegayushchee ispol'zovanie elektricheskoi energii [Energy-saving use of electric energy]. Universum: Tekhnicheskie nauki: elektron. nauchn. zhurn. [Universum: Technical sciences: electron. scientific journal], 2016. No.11(32). URL:
17. Alekseeva T.L., Ryabchenok N.L. Astrakhantsev L.A. Technology of Electric Power Efficient Use in Transport. Materialy International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017. SpringerLink, 2017, pp. 120-133.
18. Vorotilkin A.V., Mikhal'chuk N.L., Ryabchenok N.L., Alekseeva T.L. Innovatsionnye perspektivy tyagovogo elektropodvizhnogo sostava [Innovative perspectives of electric rolling stock]. Mir transporta [World of Transport], 2015, Vol. 13. No.6, pp. 62 – 76.
19. Burkov A.T. Elektronika i preobrazovatel'naya tekhnika [Electronics and converter equipment]: Vol.2. Moscow: UMTs ZhDT Publ., 2015. 307 p. [Elektronic media]: