FLUX INFLUENCE ON THE ACCURACY OF MEASUREMENTS DURING INDUCTION SOLDERING OF ALUMINUM WAVEGUIDE DUCTS

Receipt date: 
03.10.2018
Bibliographic description of the article: 

Milov A. V., Tynchenko V. S., Murygin A. V. Vliyanie flyusa na tochnost' izmerenii v protsesse induktsionnoi paiki alyuminievykh volnovodnykh traktov [Flux influence on the accuracy of measurements during induction soldering of aluminum waveguide ducts]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2018, Vol. 60, No. 4, pp. 38–46.  DOI: 10.26731/1813-9108.2018.4(60).38-46

Year: 
2018
Journal number: 
УДК: 
004.896
DOI: 

10.26731/1813-9108.2018.4(60).38-46

Article File: 
Pages: 
38
46
Abstract: 

The technological process of induction soldering of thin-walled aluminum waveguide tracts involves the use of non-contact temperature sensors. This is due to the fact that the use of contact methods of connection requires additional technological operations to clean and level the surfaces of the parts to be joined. However, the data obtained with the use of non-contact measuring sensors can have significant errors caused by both the physical features of this measurement method and the induction soldering process itself.

Before developing methods of correcting measurement errors, it is necessary to conduct an experimental study to determine the degree of flux influence on the indications of means of measuring the parameters of the induction soldering process. The authors provide the description of the laboratory installation on which experiments were conducted to evaluate the influence of flux on the process of induction soldering of thin-walled aluminum waveguide ducts. Also, the article describes the technique and series of experiments to assess the effect of flux on the technological process. The results of a series of experiments and calculations on the statistical processing of experimental data are presented. Within the framework of this study, four series of experiments were conducted, with 10 experiments in each series. The results of the experiments are in good agreement with each other, and also point to the statistical significance of the hypothesis about the effect of flux on the process of induction soldering of thin-walled aluminum waveguide ducts. Based on the results of statistical processing of experimental data, the authors suggest the methods for correcting the non-normative errors of measuring instruments. Also, further directions of the development of research in this field are proposed.

List of references: 

1.      Вологдин В. В., Кущ Э. В., Асамов В. В. Индукционная пайка. Л. : Машиностроение. 1989. 72 с.

2.      Gierth P., Rebenklau L., Michaelis A. Evaluation of soldering processes for high efficiency solar cells // IEEE, 2012 35th International Spring Seminar In Electronics Technology. 2012. Р. 133–137.

3.      Developing a fast cordless soldering iron via induction heating / E. E. Mazon-Valadez et al. // Dyna. 2014. № 81 (188). Р. 166–173.

4.      Development of a New Investment for High–frequency Induction Soldering / F. Nishimura et al. // Dental materials journal. 1992. № 11 (1). Р. 59–69.

5.      Ланин В. Высокочастотный электромагнитный нагрев для пайки электронных устройств // Технологии в электронной промышленности. 2007. № 5. С. 46–49.

6.      Бабенко П. Г., Иванов И. Н. Высокочастотные индукторы для индукционной пайки // Сварочное производство. 2013. № 8. С. 47–48.

7.      Слухоцкий А. Е., Рыскин С. Е. Индукторы для индукционного нагрева // Л. : Энергия. 1974. 264 с.

8.      Слухоцкий А. Е. Индукторы // Л.: Машиностроение. 1989. 69 с.

9.      Слухоцкий А.Е. Установки индукционного нагрева // Л. : Энергоиздат. 1981. 328 с.

10.    Особенности производства волноводно-распределительных трактов антенно-фидерных устройств космических аппаратов / С. К. Злобин и др. // Вестник Сибир. гос. аэрокосмич. ун-та им. акад. М. Ф. Решетнева. 2013. № 6 (52). C. 196–201.

11.    Complex of automated equipment and technologies for waveguides soldering using induction heating / A.V. Murygin et al. // IOP Conference Series: Materials Science and Engineering. 2017. № 173 (1). Р. 012023.

12.    The automated system for technological process of spacecraft's waveguide paths soldering / V.S. Tynchenko et al. // IOP Conference Series: Materials Science and Engineering. 2016. № 155 (1). Р. 012007.

13.    Modeling of thermal processes in waveguide tracts induction soldering / A.V. Murygin et al. // IOP Conference Series: Materials Science and Engineering. 2017. № 173 (1). Р. 012026.

14.    Кудрявцев И. В., Барыкин Е. С., Гоцелюк О. Б. Математическая модель нагрева волновода при передаче высокой мощности сигнала // Молодой ученый. 2013. № 9. С. 52–57.

15.    Разработка метода управления индукционной пайкой на основе нечеткого регулятора / А.В. Милов и др. // Научно-технический вестник Поволжья. 2017. №3. С. 118–121.

16.    Грачев Ю. П., Плаксин Ю. М. Математические методы планирования экспериментов // М. : ДеЛи принт. 2005. 296 с.

17.    Gotman A. Sh. Theory of Probability and Mathematical Statistics // International Journal of Applied and Fundamental Research. 2011. №7. C. 185–197.

18.    Боровков А. А. Математическая статистика. Оценка параметров, проверка гипотез // М. : Наука. 1984. 472 с.

19.    Налимов В. В., Чернова Н. А. Статистические методы планирования экспериментов // М.: Наука. 1965. 340 с.