Modeling of electromagnetic influence of traction networks on pipelines in case of complex approach paths

Receipt date: 
Bibliographic description of the article: 

Kryukov A. V., Cherepanov A. V., Kryukov A. E., Mukhopad Yu. F. Modelirovanie elektromagnitnykh vliyanii tyagovykh setei na truboprovody pri slozhnykh traektoriyakh sblizheniya [Modeling of electromagnetic influence of traction networks on pipelines in case of complex approach  paths]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 3(67), pp. 116–125. 10.26731/1813-9108.2020.3(67).116-125

Journal number: 
621.311: 621.331


Article File: 

The purpose of the computer research presented in the article was to develop a methodology for simulating the electromagnetic influence of traction networks of AC railways on pipelines laid on the ground surface. The paper considers situations corresponding to the complex paths for pipelines approaching railway lines. The simulation was carried out in the Fazonord software package developed at Irkutsk State Transport University. In this software package, a lattice equivalent circuit of a multi-wire system is formed by using expressions for the internal and mutual resistances of individual conductors. In this case, an algorithm for implementing Carson's formulas is applied, which is acceptable from the viewpoint of coverage of the near, intermediate, and far zones and has sufficient speed for multiple calculations carried out to account for the displacement of traction loads. Modeling results are presented for an example of a 25-kV traction network and a pipeline laid on the ground. The situation of a complex path for the traction network approaching the pipeline was considered. For comparison, calculations were performed with parallel approximation. It is shown that the maximum induced voltage in the latter case can exceed 100 V. For a complex path, this indicator is 85 V, but also exceeds the permissible value of 60 V. In order to ensure safe working conditions for the personnel, measures are required to lower the induced voltages. The proposed methodology can be used to solve practical problems associated with the design and operation of oil and gas transport pipeline sections approaching routes of electrified alternating current railways. The methodology is multiple-function and can be used for any trajectory of pipelines approaching traction networks. It is possible to take into account the unequal electrical characteristics of soils in individual sections of the approach. This work was financially supported by a grant on the topic “Improving the quality of electric energy and electromagnetic safety in power supply systems of railways equipped with Smart Grid devices by applying methods and means of mathematical modeling based on phase coordinates”.

List of references: 
  1. Borodavkin P.P., Berezin V.L. Sooruzhenie magistral'nykh truboprovodov [The construction of trunk pipelines]. Moscow: Nedra Publ., 1987. 470 p.
  2. Strizhevskii I.V., Dmitriev V.I. Teoriya i raschet vliyaniya elektrifitsirovannoi zheleznoi dorogi na podzemnye metallicheskie sooruzheniya [Theory and calculation of the influence of the electrified railway on underground metal structures]. Moscow, 1967. 248 p.
  3. Tret’yakova M.V., Furkin A.V. Otsenka opasnogo vliyaniya navedennykh tokov linii elektroperedach na podzemnye truboprovody [Evaluation of the dangerous effect of induced currents of electric transmission lines on underground pipelines]. Rassokhinskie chteniya [Rassokhinsky readings]. Ukhta, 2011. Pp. 320–325.
  4. Yabluchanskii A.I. Metodika otsenki opasnogo vliyaniya peremennogo toka vysokovol'tnykh LEP na proektiruemyi gazoprovod [The methodology for assessing the hazardous effects of alternating current of high-voltage power transmission lines on the gas pipeline being designed]. Materialy otraslevogo soveshchaniya po problemam zashchity ot korrozii [Materials of the industry meeting on the problems of protection against corrosion]. Moscow, 2008. Pp. 110–123.
  5. Zakharov D.B., Piont D.Yu., Yabluchanskii P.A. Otsenka vliyaniya vysokovol'tnoi linii elektroperedachi na podzemnyi truboprovod ego zashchita ot vozdeistviya navedennogo peremennogo toka [Evaluation of the effect of a high-voltage power transmission line on an underground pipeline, its protection from the effects of induced alternating current]. Gazovaya promyshlennost' [Gas industry], 2018. No. 9 (774). Pp. 84–90.
  6. Zakharov D.B., Yabluchanskii P.A., Titov A.V. Ob otsenke korrozionnogo vozdeistviya LEP na podzemnyi truboprovod pri ikh peresechenii [On the assessment of the corrosive effects of power transmission lines on an underground pipeline at their intersection]. Territoriya “NEFTEGAZ” [Oil and Gas Territory], 2013. No. 12. Pp. 68–74.
  7. Kotel’nikov A.V., Kosarev A.B. Elektromagnitnoe vliyanie tyagovykh setei peremennogo toka na metallicheskie konstruktsii [Electromagnetic effect of traction AC networks on metal structures]. Elektrichestvo [Electricity], 1992. No. 9. Pp. 26–34.
  8. Cherepanov A.V., Kryukov A.E. Determination of electromagnetic effects of electric traction net-works on pipelines. IOP Conference Series: Materials Science and Engineering. Vol. 760, International Conference on Transport and Infrastructure of the Siberian Region (SibTrans-2019) November 12–15, 2019, Moscow, Russian Federation. DOI: 10.1088 / 1757-899X / 760/1/012014.
  9. Cherepanov A.V., Kryukov A.E. Uchet garmonicheskikh iskazhenii pri opredelenii elektromagnitnogo vliyaniya tyagovykh setei na truboprovody [Taking into account harmonic distortions in determining the electromagnetic influence of traction networks on pipelines]. Transportnaya infrastruktura Sibirskogo regiona [Transport infrastructure of the Siberian region]. Irkutsk, 2018. Vol. 1. Pp. 682–687.
  10. Ratner M.P. Induktivnoe vliyanie elektrifitsirovannykh zheleznykh dorog na elektricheskie seti i truboprovody [Inductive effect of electrified railways on electric networks and pipelines]. Moscow: Transport Publ., 1966. 164 p.
  11. Krapivskii E.I., Yabluchanskii P.A. Algoritm rascheta elektromagnitnogo vliyaniya linii elektroperedachi peremennogo toka na podzemnyi truboprovod [The algorithm of calculating the electromagnetic influence of an alternating current power transmission line on an underground pipeline]. Gornyi informatsionno-analiticheskii byulleten' [Mining informational and analytical bulletin], 2013. No. 2. Pp. 213–224.
  12. Kotel’nikov A.V., Kosarev A.B. [Electromagnetic effect of traction AC networks on metal structures]. Elektrichestvo [Electricity], 1992. No. 9. Pp. 26–34.
  13. Konnova E.I., Kosarev A.B. Raschet elektromagnitnogo vliyaniya setei peremennogo toka na metallicheskie kommunikatsii [Calculation of the electromagnetic influence of AC networks on metal communications]. Vestnik VNIIZhT [Vestnik of the Railway Researh Institute], 1990. No. 2. Pp. 17–19.
  14. Carson J.R. Wave propagation in overhead wires with ground return. Bell syst. Tech. J., 1926. No. 5. Pp. 539–554.
  15. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskikh sistem [Complex asymmetric modes of electrical systems]. Irkutsk, 2005. 273 p.
  16. Zakaryukin V.P., Kryukov A.V. Determination of the induced voltages when nonparallel power lines are adjacent to one another [Determination of the induced voltages when nonparallel power lines are adjacent to one another]. Power Technology and Engineering, 2015. Vol. 49. No. 4. Pp. 304–309.
  17. Zakaryukin V.P., Kryukov A.V. Utochnennaya metodika opredeleniya vzaimnykh elektromagnitnykh vliyanii smezhnykh linii elektroperedachi [The specified methodology of determining the mutual electromagnetic influences of adjacent power transmission lines]. Izvestiya vuzov. Problemy energetiki [Power engineering: research, equipment, technology], 2015. No. 3-4. Pp. 29–35.
  18. Zakaryukin V.P., Kryukov A.V., Nguyen Tu. Opredelenie navedennykh napryazhenii pri slozhnykh traektoriyakh sblizheniya tyagovoi seti peremennogo toka i smezhnoi linii [Determination of induced voltages during complex paths of approaching a traction network of an alternating current and an adjacent line]. Vestnik RGUPS, 2016. No. 2 (62). Pp. 115–123.
  19. Kostenko M.V., Perel’man L.S., Shkarin Yu.P. Volnovye protsessy i elektricheskie pomekhi v mnogoprovodnykh liniyakh vysokogo napryazheniya [Wave processes and electrical interference in multi-wire high voltage lines]. Moscow, 1973. 272 p.
  20. Technische Richtlinien-71 (TRL-71). EMR-Technic Kathodischer Korrosionsschutz fur Erdgasfern-leitungen. 80 p.