Research of the automated process of high-frequency oil filling of the polymeric material PA6 with the motor oil M-8V to increase operating properties of parts applicable in transport

Receipt date: 
20.03.2020
Bibliographic description of the article: 

Bychkovskii V. S., Bakanin D. V., Kuraitis A. S., Filippenko N. G. Kompleksnoe reshenie problemy razvitiya tekhnicheskogo osnashcheniya infrastruktury magistral'nogo transporta [Research of the automated process of high-frequency oil filling of the polymeric material PA6with the motor oil M-8V to increase operating properties of parts applicable on transport]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 4 (68), pp. 49–58. – DOI: 10.26731/1813-9108.2020.4(68).49-58

Year: 
2020
Journal number: 
УДК: 
691.175.2, 621.893
DOI: 

10.26731/1813-9108.2020.4(68).49-58

Article File: 
Pages: 
49
58
Abstract: 

According to a developed new technology for the process of oil filling of polymer and composite materials, an automated control system for the process of oil filling of polymer and composite materials using electrothermal treatment for uniform and selective heating of the sample, excluding the liquid medium (oil), has been created. With the advent of this oil filling technology, the question came up: at what moment will the complete filling of a polymer sample with a liquid plasticizer be determined. Proceeding from this, it was decided to study the heat exchange of the polymer sample PA6 with M-8V engine oil during oil filling. For this, the scheme of an experimental research installation for electrothermal oil filling was drawn up, and the selected parameters were justified in two stages: drying until a certain condition is met and the oil filling itself. For this scheme, a finite-difference calculation of the heat transfer of a polymer sample and engine oil was performed without taking into account impregnation in the “Solidworks Flow Simulation 2017” software package and with filling with a liquid plasticizer with M-8B oil into the sample body. The results presented in Figures 8 and 9 showed with what gradient temperature of the polymer sample changes throughout the volume with oil filling with and without impregnation. The temperature ranges were as follows: 102.6…114.25 ºС without impregnation; 23.45...24.00 taking into account impregnation. The results obtained will be used for comparative analysis with experimental values.

List of references: 
  1. Filippenko N.G., Butorin D.V., Kargapol’tsev S.K., Livshits A.V. Fiziko-tekhnicheskie protsessy v tekhnologicheskikh operatsiyakh termicheskoi, mekhanicheskoi, vysokochastotnoi i ul'trazvukovoi obrabotki polimernykh i kompozitnykh konstruktsionnykh materialov: monografiya [Physical and technical processes in technological operations of thermal, mechanical, high-frequency and ultrasonic processing of polymer and composite structural materials: a monograph]. Irkutsk: ISTU Publ., 2017. 256 p.
  2. Chuklai I.V., Filippenko N.G., Butorin D.V. Tekhnologiya maslonapolneniya polimernykh i kompozitnykh antifriktsionnykh materialov [Oil-filling technology for polymer and composite antifriction materials] // [Transport infrastructure of the Siberian region], 2016. Vol. 2. Pp. 490–495.
  3. Bychkovskii V.S., Filippenko N.G., Bakanin D.V., Kuraitis A.S. Issledovanie izmeneniya temperatury polimernogo obraztsa pri vysokochastotnom razogreve v zavisimosti ot izmeneniya ob"ema tela i vliyaniya konvektsii [Research of changes in the temperature of a polymer sample under high-frequency heating depending on changes in body volume and the effect of convection] // Molodaya nauka Sibiri [Young science of Siberia]. Irkutsk: Irkutsk State Transport University Publ., 2018. No. 1(1). Pp. 56–63.
  4. Butorin D. Automated control system to monitor dielectric losses in polymers // MATEC Web of Conferences 2018. Pp. 02003.
  5. Butorin D.V. Avtomatizatsiya upravleniya protsessami vysokochastotnoi obrabotki polimernykh materialov raznoi stepeni polyarnosti: dis. … kan. tekh. nauk [Automation of control of processes of high-frequency processing of polymeric materials of different degree of polarity: Ph.D. (Engineering) diss.] 05.13.06. Irkutsk, 2018. 174 p.
  6. Trofimov N.V. Matematicheskaya model' optimal'nogo rezhima vysokochastotnoi svarki plastmass [Mathematical model of optimal regime of high frequency welding of plastics] // Materialy KhKhII Medunarod. nauch. konf. «Matematicheskie metody v tekhnike i tekhnologiyakh (MMTT–21)» [Proceedings of the XXII International. science. Conf. “Mathematical methods in engineering and technologies (mmtt–21)”]. Pskov: Pskov State Polytechnic Institute, 2009. Vol. 10. Section 11. Pp. 71–73.
  7. Butorin D.V. Matematicheskoe modelirovanie protsessa vysokochastotnoi sushki partii polimernykh izdelii, izolirovannykh ot elektrodov rabochego kondensatora s oboikh storon [Mathematical modeling of the high-frequency drying process of the batch of polymeric products isolated from the electrodes of a working condenser with both sides] // Colloquium-journal, 2018. No. 7-3 (18). Pp. 14–23.
  8. Rabek Jan. F. Experimental methods in polymer chemistry. Wiley, New York, 1980, 861 pp. [Transl. from English. Russian ed.: Rabek Ya. Eksperimental'nye metody v khimii polimerov. In Korshak V. V. (ed.), Moscow: Mir Publ., 1983. 480 p.].
  9. Filippenko N.G., Butorin D.V., Livshits A.V. Opredelenie fazovykh i relaksatsionnykh perekhodov v polimernykh materialakh [Determination of phase and relaxation transition in polymer materials] // Avtomatizatsiya. Sovremennye tekhnologii [Automation. Modern technologies], 2017. Vol. 71. No. 4. Pp. 171–175.
  10. Temperatura masla v dvigatele – svoistva i kharakteristiki [Engine oil temperature-properties and characteristics] [Electronic media]. URL: https://vmasla.ru/interesnoe/temperatura-masla-v-dvigatele.
  11. Spravka po Solidworks. Flow Simulation 2017 onlain rukovodstvo pol'zovatelya. Vkhodnye dannye. Svoistvo poristoi sredy. Kompaniya Dassault Systemes. [SolidWorks\Flow Simulation 2017 Online help user guide. Input data. Porous media property. Dassault Systemes Company].
  12. Butorin D.V., Bychkovskii V.S., Bakanin D.V., Filippenko N.G., Kuraitis A.S. Development and automation of the device for determination of thermophysical properties of polymers and composites. The publication is indexed in international citation and analytical databases Web of Science and Scopus. Advances in Intelligent Systems and Computing, 2020. Vol. 982. Pp. 731–740.
  13. Bakanin D.V., Filippenko N.G., Bychkovskii V.S., Kuraitis A.S. Avtomatizatsiya ustroistva po opredeleniyu teplofizicheskikh svoistv i fazovykh prevrashchenii v polimernykh i kompozitnykh materialakh [Automation of devices for determining thermal properties and phase transformations in polymer and composite materials]. Molodaya nauka Sibiri [Young Science of Siberia]. Irkutsk: Irkutsk State Transport University Publ., 2018. No. 1(1). Pp. 42–53.
  14. Kryzhanovskii V.K., Burlov V.V., Panimatchenko A.D. Tekhnicheskie svoistva polimernykh materialov: Uchebno-spravochnoe posobie [Technical properties of polymeric materials: a teaching aid]. Sankt-Peterburg: Professiya Publ., 2003, 240 р.
  15. Shastin V.I., Kargapol’tsev S.K., Gozbenko V.E., Livshits A.V., Filippenko N.G. Results of the complex studies of microstructural, physical and mechanical properties of engineering material using innovative methods. International Journal of Applied Engineering Research, 2017. Vol. 12. No. 24. Pp. 15269–15272.
  16. Livshits A.V. Avtomatizirovannaya sistema nauchnykh issledovanii vysokochastotnoi elektrotermii [Automated system of scientific research of high-frequency electrothermy]. Problemy mashinostroeniya i avtomatizatsii [Problems of mechanical engineering and automation], 2015. No. 4. Pp. 54–60.
  17. Piven' A.N., Grechanaya N.A., Chernobyl'skii I.I. Teplofizicheskie svoistva polimernykh materialov: spravochnik [Thermophysical properties of polymeric materials: a reference book]. Kiev: Vishcha shkola Publ., 1976, 180 p.
  18. Slepneva L.M. Fizikokhimiya polimerov: Elektronnyi uchebno-metodicheskii kompleks [Physics and chemistry of polymers. An electronic educational-methodical complex]. Minsk, 2014, 129 р.
  19. Petrova P.N., Okhlopkova A.A., Fedorov A.L. Osobennosti strukturoobrazovaniya polimernykh kompozitov, modifitsirovannykh zhidkoi smazkoi [Peculiarities of the structure formation of polymeric composites modified by liquid lubrication]. Zhurnal strukturnoi khimii [Journal of Structure Chemistry]. Novosibirsk: Publishing house of the SB RAS, 2011. No. 6, Pp. 1116–1122.
  20. Gigroskopichnost' polimera [The hygroscopicity of the polymer] [Electronic media] // Promyshlennye tekhnologii [Industrial technology]. URL: https://filamentarno.ru/masterclass_04.html.
  21. Livshits A.V. Upravlenie tekhnologicheskimi protsessami vysokochastotnoi elektrotermii polimerov [Process control of high-frequency electrothermal polymers] // Problemy mashinostroeniya i avtomatizatsii [Problems of mechanical engineering and automation], 2015. No. 3. Pp. 120–126.