THEORY AND METHODS OF CREATING MACHINES FOR THE SYNTHESIS OF ENGINEERING MATERIALS

Receipt date: 
15.09.2019
Bibliographic description of the article: 

Nebogin S. A., Gorovoi V. O., Ershov V. A. Teoriya i metody sozdaniya mashin dlya sinteza mashinostroitel'nykh materialov [Theory and methods of creating machines for the synthesis of engineering materials]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2018, Vol. 60, No. 4, pp. 23–31. DOI: 10.26731/1813-9108.2018.4(60).23-31

Year: 
2018
Journal number: 
УДК: 
658.567.1
DOI: 

10.26731/1813-9108.2018.4(60).23-31

Article File: 
Pages: 
24
31
Abstract: 

This article deals with methods of processing of the dust carried away from ore-thermal furnaces of silicon production. Chemical and granulometric analysis of dust entrainment of silicon production is carried out. The possibility of application of gravity-centrifugal separation to obtain target products, such as spherical silicon dioxide and nanostructured carbon, is considered. Separation of dust from the silicon production bag filters in carbon and microsilica components took place on the developed stand that consisted of five consecutively mounted gravity-centrifugal dust collectors (cyclones). Microsilica particles, having a higher true density compared to carbon particles, were more exposed to the influence of centrifugal forces during the passage of the cyclone. The dust and gas flow was created with the help of a compressor and a dust-dosing device including a screw feeder and a slit gate. Dustiness of the dust and gas flow is 33 g/Nm3, with a performance of raw material of 1 kg/h. Dust from furnaces, collected by bag filters from the pipeline, carrying the dust and gas flow from the furnaces of silicon, was used as the raw materials. Simulation of the gravitational-centrifugal separation process showed the possibility of complete separation of silicon dioxide and carbon particles. As a result of a series of tests, it was possible to achieve an increase in the concentration of microsilica suspension from 93% to 98% with a product yield of up to 35% by weight. It was possible to increase the concentration of carbon fraction from 6% to 24% with a product yield of 10 %. Low efficiency of using this method of separation occurs due to mechanically bound particles of silicon dioxide and carbon, the separation of which is most likely possible only by chemical methods. Mathematical calculations and the results of mathematical modeling indicate that it is possible to increase the yield of the finished product in the case of changes in the geometric dimensions of dust-collecting devices and the modes of operation of the draft equipment of the stand.

Financing: 

Статья подготовлена при финансовой поддержке Министерства образования и науки РФ с использованием результатов работ, выполненных в ходе проекта 02.G25.31.0174 «Разработка комплексной ресурсосберегающей технологии и организация высокотехнологичного производства наноструктур на основе углерода и диоксида кремния для улучшения свойств строительных и конструкционных материалов» в рамках Программы реализации комплексных проектов по созданию высокотехнологичного производства, утвержденных постановлением Правительства РФ № 218 от 9 апреля 2010 г.

List of references: 

1. Sysoev I.A., Kondrat'ev V.V., Gorovoi V.O., Zimina T.I. Laboratornye ispytaniya kozhukhotrubchatogo teploobmennogo ustroistva [Laboratory tests of shell-and-tube heat exchanging device]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2016, Vol. 20, No. 12 (119), pp. 155-164.

2. Sysoev I.A., Kondrat'ev V.V., Kolmogortsev I.V., Unagaev E.I., Zimina T.I. Optimizatsiya konstruktsii teploobmennykh elementov pri proektirovanii teploobmennogo ustroistva [Optimization of the design of heat exchange elements in the design of heat exchange devices]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2016, No. 4 (32), pp. 118-124.

3. Yolkin K.S., Yolkin D.K., Shtayger M.G., Kolosov A.D., Ivanov N.A. Technologies, which allow reducing an impact of metal silicon production on the environment. IOP Conference Series: Materials Science and Engineering Volume 411 conference proceedings, 2018, pp. 012028.

4. Kolosov A.D. Analiz primeneniya amorfnogo nanokremnezema [Analysis of the use of amorphous nanosilicon]. Baikal 2018. Sbornik statei Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Baikal 2018. Collection of articles of the International Scientific and Practical Conference], 2018, pp. 85-91.

5. Kondrat'ev V.V., Kolosov A.D., Gorovoi V.O., Nebogin S.A., Elkin K.S., Nemarov A.A., Ivanov A.A. Resursosberegayushchaya tekhnologiya polucheniya nanokremnezema [Resource-saving technology of nanosilica production]. METALLURGIYA: TEKHNOLOGII, INNOVATSII, KACHESTVO. Trudy XX Mezhdunarodnoi nauchno-prakticheskoi konferentsii: v 2 chastyakh [METALLURGY: TECHNOLOGIES, INNOVATIONS, QUALITY. Works of the XX International Scientific and Practical Conference: in 2 parts], 2017, pp. 401-406.

6. Gorovoi V.O., Kolosov A.D., Baleeva A.I. Izvlecheniya ftoristykh solei iz otrabotannoi futerovki elektrolizera po proizvodstvu alyuminiya [Extraction of fluoride salts from the spent lining of an aluminum production cell]. Perspektivy razvitiya tekhnologii pererabotki uglevodorodnykh i mineral'nykh resursov Materialy VII Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi 55-letiyu kafedry avtomatizatsii proizvodstvennykh protsessov [Prospects for the development of technology for the processing of hydro-carbon and mineral resources Materials of the VII All-Russian Scientific and Practical Conference with international participation dedicated to the 55th anniversary of the Department of Automation of Production Processes]. Irkutsk National Research Technical University. Editorial board: Antsiferov E.A., Bel'skii S.S., Nemchinova N.V., Elshin V.V., et al., 2017, pp. 175-178.

7. Kolosov A.D., Ershov V.A., Sysoev I.A. Tekhnologicheskie resheniya pererabotki ftorsoderzhashchikh otkhodov alyuminievogo proizvodstva [Technological solutions for the processing of fluorine-containing aluminum production wastes]. Ekologicheskie problemy regionov Sbornik statei Vserossiiskoi nauchno-prakticheskoi konferentsii [Environmental problems of the regions. Collection of articles of the All-Russian Scientific and Practical Conference], 2017, pp. 145-149.

8. Kolosov A.D., Nemarov A.A., Nebogin S.A. Tekhnologiya polucheniya i primeneniya nanokremnezema pri proizvodstve novykh materialov dlya mashinostroeniya [Technology of production and use of nanosilica in the production of new materials for mechanical engineering]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2017, No. 3 (55), pp. 59-66.

9. Ivanchik N.N., Kondrat'ev V.V., Ivanov N.A., Karlina A.I. Izuchenie svoistv tonkodispersnykh otkhodov kremnievogo proizvodstva metodami elektronnoi mikroskopii [Study of the properties of fine silicon waste produced by electron microscopy methods]. Sbornik dokladov VII mezhdunarodnogo Kongressa «Tsvetnye metally i mineraly» [Collection of reports of the VII International Congress "Non-Ferrous Metals and Minerals"], 2015, pp. 234-235.

10. Kondrat'ev V.V., Ivanchik N.N., Petrovskaya V.N., Nemarov A.A., Karlina A.I. Pererabotka i primenenie melkodispersnykh otkhodov kremnievogo proizvodstva v stroitel'stve [Processing and application of fine silicon waste in construction]. V sbornike: Olon Ulsyn Betony XIV BAGA KhURAL Materialy mezhdunarodnogo stroitel'nogo simpoziuma [In the collection: Olon Ulsyn Concretes XIV BAGA KHURAL. Materials of the international construction symposium], 2015, pp. 105-114.

11. Karlina A.I. Analiz sovremennykh i perspektivnykh sposobov vozdeistviya na prirodnye i stochnye vody [Analysis of modern and promising ways of influencing natural and waste waters]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2015, No. 5 (100), pp. 146-150.

12. Yastrebov K.L., Druzhinina T.Ya., Nadrshin V.V., Karlina A.I. Podgotovka i ochistka prirodnykh i stochnykh vod. Monografiya [Preparation and purification of natural and waste waters: a monograph]. Irkutsk State Technical University, Irkutsk, 2014.

13. Karlina A.I. Razrabotka tekhnologii podgotovki otkhodov kremnievogo proizvodstva dlya ispol'zovaniya v chernoi metallurgii [Development of technology for the preparation of waste silicon production for use in ferrous metallurgy]. Zhiznennyi tsikl konstruktsionnykh materialov (ot polucheniya do utilizatsii) [Life cycle of structural materials (from receipt to disposal)], 2018, pp. 148-156.

14. Ivanchik N.N., Balanovskii A.E., Kondrat'ev V.V., Sysoev I.A., Karlina A.I. Rasshirenie vozmozhnostei proizvodstva aktiviruyushchikh flyusov dlya dugovoi svarki za schet ispol'zovaniya ul'tradispersnykh produktov pererabotki otkhodov kremniya [Expanding the production of activating fluxes for arc welding through the use of ultrafine silicon waste processing products]. Metallurgiya: tekhnologii, innovatsii, kachestvo [Metallurgy: technology, innovation, quality], 2017, pp. 300-305.

15. Elkin K.S., Elkin D.K., Karlina A.I. O tekhnologiyakh snizheniya vliyaniya proizvodstv metallicheskogo kremniya na okruzhayushchuyu sredu [On technologies to reduce the impact of the production of metallic silicon on the environment]. Metallurgiya: tekhnologii, innovatsii, kachestvo [Metallurgy: technology, innovation, quality], 2017, pp. 427-432.

16. Nemarov A.A., Lebedev N.V., Ivanov N.A., Karlina A.I., Ivanov N.N., Gorovoi V.O. Primenenie aeratsii pri flotatsii nanorazmernykh chastits pyli gazoochistki proizvodstva kremniya [The use of aeration in the flotation of nanosized dust particles from gas purification of silicon production]. Tsvetnye metally i mineraly [Non-ferrous metals and minerals], 2016, pp. 168-169.

17. Kondrat'ev V.V., Nemarov A.A., Ivanov N.A., Karlina A.I., Ivanchik N.N. Teoriya i praktika protsessov flotatsionnogo obogashcheniya nanorazmernykh sred [Theory and practice of flotation enrichment processes of nanoscale media]. Irkutsk National Research Technical University, Irkutsk, 2015.

18. Kondrat'ev V.V., Ivanov N.A., Balanovskii A.E., Ivanchik N.N., Karlina A.I. Uluchshenie svoistv serogo chuguna kremniidioksid i uglerodnymi nanostrukturami [Improving the properties of gray iron, silica and carbon nanostructures]. Tekhnika i tekhnologii [Engineering and Technologies], 2016, Vol. 9, No. 5, pp. 671-685.

19. Karlina A.I., Balanovskii A.E., Kolosov A.D., Elkin K.S., Levina S.V. Modifikatory na osnove kremniidioksid i uglerodnykh nanostruktur dlya uluchsheniya svoistv serogo chuguna [Modifiers based on silicon dioxide and carbon nanostructures to improve the properties of gray iron]. Baikal 2018. 2018, pp. 104-108.

20. Elkin K.S., Ivanov N.A., Karlina A.I., Ivanov N.N. Uglerodnye nanotrubki v proizvodstve metallicheskogo kremniya [Carbon nanotubes in the production of metallic silicon]. Tsvetnye metally i mineraly [Non-ferrous metals and minerals], 2015, pp. 224-225.

21.Kondrat'ev V.V., Karlina A.I., Nemarov A.A., Ivanov N.N. Rezul'taty teoreticheskikh i prakticheskikh issledovanii flotatsii nanorazmernykh kremniisoderzhashchikh struktur [The results of theoretical and practical studies of flotation of nanoscale silicon-containing structures]. Tekhnika i tekhnologii [Engineering and Technologies], 2016, 9(5), pp. 657-670.

22. Karlina A.I. Izuchenie gidrodinamiki gravitatsionnogo obogashcheniya poleznykh iskopaemykh [Study of the hydrodynamics of gravitational enrichment of minerals]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University]. Irkutsk: IrGTU Publ., 2015, No. 3, pp. 194-199.

23. Karlina A.I. Izuchenie struktury vnutrennikh techenii i volnovogo dvizheniya vodnogo i vzvesenesushchego potoka [Study of the structure of internal currents and wave motion of a water and a suspended flow]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University]. Irkutsk: IrGTU Publ., 2015, No. 4, pp. 137-145.

24. Nemarov A., Lebedev N., Kondrat'ev V., Kornyakov M., Karlina A.I. Theoretical and experimental research of parameters of pneumatic aerators and elementary cycle flotation [Theoretical and experimental cycle flotation]. International Journal of Applied Engineering Research, 2016, Vol. 11, No. 20, pp. 10222-10226.

25. Ershov V.A., Gorovoi V.O., Karlina A.I. Upravlenie tekhnologicheskim protsessom pererabotki otkhodov kremnievogo proizvodstva [Management of the technological process of recycling silicon production]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2016, No. 4 (52), pp. 114-121.

26. Kondrat'ev V.V., Ivanov N.A., Karlina A.I., Kargapol'tsev S.K. Avtomatizirovannaya sistema upravleniya parametrami sistem gazoochistki tekhnologicheskikh protsessov [Automated system for controlling the parameters of gas purification systems of technological processes]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2017, No. 2 (54), pp. 90-94.

27. Kondratiev V.V., Govorkov A.S., Kolosov A.D., Gorovoy V.O., Karlina A.I. The development of a test stand for developing technological operation flotation and separation of md2. The deposition of nanostructures md1 produce nanostructures with desired properties. International Journal of Applied Engineering Research, 2017, Vol. 12, No. 22, pp. 12373-12377.

28. Kondratiev V.V., Nebogin S.A., Sysoev I.A., Gorovoy V.O., Karlina A.I. Description of the test stand for developing of technological operation of nano-dispersed dust preliminary coagulation. International Journal of Applied Engineering Research, 2017, Vol. 12, No. 22, pp. 12809-12813.

29. Kondrat'ev V.V., Nebogin S.A., Kolosov A.D., Gorovoi V.O., Nemarov A.A., Ivanov A.A., Zapol'skikh A.S. Vozmozhnosti ispol'zovaniya sukhoi separatsii mikrokremnezema dlya polucheniya tselevykh produktov [Possibilities of using dry separation of microsilica for obtaining target products]. METALLURGIYA: TEKHNOLOGII, INNOVATSII, KACHESTVO. Trudy XX Mezhdunarodnoi nauchno-prakticheskoi konferentsii: v 2 chastyakh [METALLURGY: TECHNOLOGIES, INNOVATIONS, QUALITY. Works of the XX International Scientific and Practical Conference: in 2 parts], 2017, pp. 432-436.