THERMODYNAMIC METHOD OF CONSTRUCTION OF OPERATIONAL CHARACTERISTICS OF PNEUMATIC ELEMENTS (AIR SPRINGS) WITH ELASTIC DEFORMABLE RUBBER-CORD CASING

Receipt date: 
16.11.2017
Section: 
Year: 
2017
Journal number: 
УДК: 
62-567.5:536.7
DOI: 

10.26731/1813-9108.2017.4(56).8-18

Article File: 
Pages: 
8
18
Abstract: 

Significant differences between the isobaric force characteristics of pneumatic elastic elements (air springs) obtained experimentally and calculated by the traditional method are noted in the article. The authors propose an extended thermodynamic method for constructing operational (force and geometric) characteristics, which takes into account the elastic deformation of a rubber-cord casing under pressure. The influence of temperature, together with a general algorithm for constructing performance characteristics is formalized, illustrated by a practical example, are shown in the paper. The analytical description of the experimental data by the proposed method satisfies the requirements for reliability of the results, which is of great practical importance in the development of vibration protection and vibration isolation systems for stationary objects and vehicles.

The performed thermodynamic analysis shows that if we do not take into account the elastic deformation of the rubber-cord casing, then the geometric characteristic of the pneumatic element will be affected by a single parameter – the coordinate of the pneumatic element, which determines the distance between the ends of the rubber-cord casing. In this case, the force of the pneumatic element will be proportional to the excess pressure of the working fluid (air).

When considering the effect of elastic deformation of the rubber-cord casing, the geometric characteristic of a pneumatic element will depend not only on the coordinate of the pneumatic element, but also on the excess pressure and temperature. As a result, the dependence of the force characteristic of the pneumatic element on the excess pressure becomes nonlinear. This result, which makes it possible to obtain more reliable data on the operational characteristics of pneumatic elements, is of great practical importance, for example, in the design of vibration protection and vibration isolation systems for stationary and transportable objects.

List of references: 

1.   Akhmadeeva A.A., Gozbenko V.E., Kargapol'tsev S.K. Vertikal'nye kolebaniya ekipazha s uprugo-podveshennym gruzom [Vertical oscillations of the crew with an elastically suspended cargo]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2012, No. 1 (33), pp. 42–46.

2.   Gozbenko V.E., Akhmadeeva A.A. Vertikal'nye kolebaniya ekipazha s uchetom nerovnostei puti [Vertical oscillations of the crew taking into account the unevenness of the track]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2013, No. 3 (39), pp. 56–59.

3.   Gozbenko V.E., Kargapol'tsev S.K., Akhmadeeva A.A. Dinamicheskie svoistva zheleznodorozhnogo vagona [Dynamic properties of the railway car]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2015, No. 4 (48), pp. 24–29.

4.   Pilipenko V.V., Pilipenko O.V., Zapol'skii L.G. Pnevmaticheskie sistemy vibrozashchity s kvazinulevoi zhestkost'yu [Pneumatic systems of vibration protection with quasi-zero stiffness]. Tekhnicheskaya mekhanika [Technical mechanics], 2008, No. 2, pp. 17–25.

5.   Pilipenko M.V. Razrabotka matematicheskoi modeli pnevmaticheskoi vibrozashchitnoi sistemy siden'ya voditelya transportnogo sredstva [Development of a mathematical model of a pneumatic vibroprotective system of a driver's seat of a vehicle]. Tekhnicheskaya mekhanika [Technical mechanics], 2009, No. 1, pp. 56–70.

6.   Khomenko A.P., Logunov A.S. Pnevmaticheskie elementy v zadachakh vibrozashchity transportnykh sredstv [Pneumatic elements in the tasks of vibration protection of vehicles]. Reshetnevskie chteniya [], 2009. No. 13, Vol. 1, pp. 230–231.

7.   Ravkin G. O. Pnevmaticheskaya podveska avtomobilya [Pneumatic suspension of the car]. Moscow: GNTIML Publ., 1962, 288 p.

8.   Pevzner Ya. M., Gorelik A.M. Pnevmaticheskie i gidropnevmaticheskie podveski [Pneumatic and hydropneumatic suspension]. Moscow: GNTIML Publ, 1963, 319 p.

9.   Akopyan R. A. Pnevmaticheskoe podressorivanie avtotransportnykh sredstv (voprosy teorii i praktiki) [Pneumatic suspension of vehicles (theory and practice issues)]. L'vov: Vyshcha shkola Publ., 1979, Part 1, 218 p.

10. Kalashnikov B. A. Sistemy amortizatsii ob"ektov s diskretnoi kommutatsiei uprugikh elementov [Systems of depreciation of objects with discrete commutation of elastic elements]. Omsk: OmSTU Publ., 2008, 344 p.

11. Khamitov R.N., Aver'yanov G.S. Sistemy amortizatsii krupnogabaritnykh ob"ektov s aktivnymi uprugimi i dempfiruyushchimi elementami [Systems of amortization of large-sized objects with active elastic and damping elements]. Omsk: OmSTU Publ, 2010, 124 p.

12. Korneev S.A., Korneev V.S., Zubarev A.V., Kliment'ev E.V. Osnovy tekhnicheskoi teorii pnevmaticheskikh amortizatorov [Fundamentals of the technical theory of pneumatic shock absorbers]. Omsk: OmSTU Publ., 2016, 148 p.

13. Iorish Yu.I. Vibrometriya [Vibrometry]. Moscow: GNTIML Publ., 1963, 772 p.

14. Khomenko A.P., Eliseev S.V., Bol'shakov R.S., Nguyen D. H. Vozmozhnosti razvitiya metoda preobrazovaniya strukturnykh skhem v zadachakh dinamiki vibrozashchitnykh sistem (chast' I) [Possibilities of developing a method for transforming structural circuits in problems of the dynamics of vibration protection systems]. Vestnik VSGUTU [ESSUTM Bulletin], 2016, No. 3, pp. 5–12.

15. Khomenko A.P., Eliseev S.V., Bol'shakov R.S., Nguyen D. H. Vozmozhnosti razvitiya metoda preobrazovaniya strukturnykh skhem v zadachakh dinamiki vibrozashchitnykh sistem (chast' II) [Possibilities for the development of the method for transforming structural circuits in problems of the dynamics of vibration protection systems (Part II)]. Vestnik VSGUTU [ESSUTM Bulletin], 2016, No. 4 (61), pp. 53–63.

16. Airstroke actuators, Airmount isolators. Engineering Manual & Design Guide (Firestone Industrial Products Company). URL: http://www.airlinehyd.com/apollo/firestone/w01metric.pdf [Accessed 20.09.2017].

17. Gavriloski V., Jovanova J. Dynamic behaviour of an air spring element. Machines & industrial design engineering. 2010, No. 4-5, pp. 24–27.

18. Presthus M. Derivation of Air Spring Model Parameters for Train Simulation. Master Thesis: Lulea University of Technology, 2002, 74 p.

19. Kir'yanov D.V. Samouchitel' MathCAD [MathCAD Self-study book]. St. Petersburg: BKhV-Peterburg Publ., 2002, 544 p.

20. GOST 24221-94. Tkan' kordnaya kapronovaya. Tekhnicheskie usloviya. Vved. 1996–07–01 [The cord kapron cloth. Standard specification. Introduction 1996–07–01]. Moscow: IPK Izdatel'stvo standartov Publ., 1996, 6 p.

21. Korneev S.A., Sokolovskii Z.N., Russkikh G.S., Korneev V.S., Tribel'skii M.I. Uchet vliyaniya rastyazhimosti nitei korda na raschetnye parametry rezinokordnykh obolochek [Taking into account the influence of cord threads extensibility on the calculated parameters of rubber-cord casings]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling],  2012, No. 3 (35), p. 69–76.

22. Kubo R. Termodinamika [Thermodynamics]. Moscow: Mir Publ., 1970, 304 p.

23. Truesdell C. Rational Thermodynamics. New York-Berlin-Heidelberg-Tokyo: Springer-Verlag, 1984, 555 p.

24. Truesdell C. A First Course in Rational Continuum Mechanics. Academic Press, 1977, 304 p. (Russ. ed.: Trusdell, K. Pervonachal'nyi kurs ratsional'noi mekhaniki sploshnykh sred. Moscow: Mir Publ., 1975, 592 p.).

25. Korneev S.A. Ponyatiya i osnovy lokal'no-neravnovesnoi termodinamiki sploshnoi sredy [Concepts and foundations of locally nonequilibrium thermodynamics of a continuous medium]. Omsk: OmSTU Publ., 2009, 284 p.

26. Dwight H.B. Tables of Integrals and Other Mathematical Data. The Macmillan Company, 1961, 336 p. (Russ. ed.: Dvait G.B. Tablitsy integralov i drugie matematicheskie formuly. Moscow: Nauka Publ., 1977, 224 p.)