Daneev A.V., Daneev R.A., Sizykh V.N. Metodika issledovaniya nesimmetrichnykh rezhimov sinkhronnykh mashin na osnove integral'nykh uravnenii Vol'terra vtorogo roda [A methodology for researching asymmetric modes of synchronous machines based on the Volterra integral equations of the second kind]. *Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie* [*Modern Technologies. System Analysis. Modeling*], 2020, Vol. 66, No. 2, pp. 143–150. 10.26731/1813-9108.2020.2(66).143-150

10.26731/1813-9108.2020.2(66).143-150

In industry, the solution to many problems is directly related to the development and research of synchronous machines, which operate into a rectifier (asymmetric) load. Transients, which are described by a system of nonlinear differential equations in synchronous machines, play a fundamental role in it. In the study of synchronous machines, it suffices to consider electromagnetic transients due to the large inertial constant of the machine. The equations become linear, but with periodic coefficients, which also do not have a common solution, since they contain periodic coefficients. The possibilities for the practical application of such equations are generally limited by the difficulties associated with the determination of eigenvalues. In this work, we apply the transformation of differential equations with periodic coefficients to equations with constant coefficients based on the representation of a system with periodic coefficients by the Volterra matrix integral equation of the second kind. The consideration is carried out by the example of a three-phase magnetoelectric generator operating on an active-inductive load. Based on a comparison with the classical theory of systems with periodic coefficients, the article established that the constant matrix *B* is not strictly defined in the considered method. The proposed modeling method allows us to study both symmetric and asymmetric transients in synchronous machines. The method does not have a limitation associated with the sinusoidal spatial distribution of the magnetic driving force of the synchronous machine windings and can be applied taking into account the higher harmonics of the inductances of synchronous machines.

- Gorev A.A. Perekhodnye protsessy sinkhronnoi mashiny [Transients of a synchronous machine]. Moscow: SEI Publ., 1950,551 p.
- Erugin N.P. Privodimye sistemy [Reducible systems]. [Proceedings of Steklov Mathematical Institute of the RAS], 1946, Vol. 12, pp. 3–96.
- Breus K.A. Ob odnom klasse lineinykh differentsial'nykh uravnenii s periodicheskimi koeffitsientami [On a class of linear differential equations with periodic coefficients]. Ukr. matem. zhurn. [Ukrain. math. journal], 1960, Vol. 12, No. 4, pp. 25–32.
- Lupkin V.M. Obobshchenie metodov privedenii i analiticheskogo resheniya uravnenii nesimmetrichnykh elektricheskikh mashin [A generalization of the reduction methods and the analytical solution of the equations of asymmetric electric machines]. Elektrichestvo [Electricity], 1985, No. 2, pp. 22–29.
- Vazhnov A.Sh. Perekhodnye protsessy v mashinakh peremennogo toka [Transients in AC machines]. Leningrad: Energiya Publ., 1980, 320 p.
- Yakubovich V.A., Starzhinskii V.M. Lineinye differentsial'nye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya [Linear differential equations with periodic coefficients and their applications]. Moscow; Nauka Publ., 1972, 720 p.
- Lupkin V.M. Analiticheskoe reshenie lineinykh differentsial'nykh uravnenii ventil'nogo dvigatelya [Analytical solution of linear differential equations of a valve motor]. Elektrichestvo [Electricity], 1981, No. 6, pp. 22–31.
- Breus K.A. O privodimosti kanonicheskoi sistemy differentsial'nykh uravnenii s periodicheskimi koeffitsientami [On the reducibility of the canonical system of differential equations with periodic coefficients]. Doklady Akademii Nauk SSSR [Papers of the Academy of Sciences of the USSR], 1958, Vol. 123, No. 1, pp. 21–25.
- Aleksandrov A.A., Daneev R.A., Sizykh V.N. [On the issue of modeling synchronous valve machines based on the quasianalytic method]. [Bulletin of the Samara Scientific Center of the Russian Academy of Sciences], 2019, Vol. 21, No. 4, pp. 63–69.
- Daneev A.V., Rusanov V.A. Ob odnom klasse sil'nykh differentsial'nykh modelei nad schetnym mnozhestvom dinamicheskikh protsessov konechnogo kharaktera [On a class of strong differential models over a countable set of dynamical processes of a finite nature]. Izvestiya vysshikh uchebnykh zavedenii. Matematika [Bulletin of Higher Education. Mathematics], 2000, No. 2, pp. 32–40.
- Rusanov V.A., Antonova L.V., Daneev A.V. Inverse problem of nonlinear systems analysis: a behavioral approach. Advances in Differential Equations and Control Processes, 2012, Vol. 10, No. 2, pp. 69–88.
- Daneev A.V., Lakeev A.V., Rusanov V.A., Rusanov M.V. K teorii realizatsii sil'nykh differentsial'nykh modelei [On the theory of the implementation of strong differential models]. Sibirskii zhurnal industrial'noi matematiki [Siberian Journal of Industrial Mathematics], 2005, Vol. 8, No. 1 (21), pp. 53–63.
- Daneev A.V., Rusanov V.A., Sharpinskii D.Yu. Nestatsionarnaya realizatsiya Kalmana-Mesarovicha v konstruktsiyakh operatora Releya-Rittsa [Unsteady Kalman-Mesarovich implementation in the constructions of the Rayleigh-Ritz operator]. Kibernetika i sistemnyi analiz [Cybernetics and System Analysis], 2007, No. 1, pp. 82–91.
- Sizykh V.N., Mukhopad A.Yu. Assotsiativnyi avtomat adaptivnogo upravleniya tekhnologicheskimi protsessami na osnove neironnykh setei [The associative automaton of adaptive control of technological processes on the basis of neural networks]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Scientific Herald of Novosibirsk State Technical University], 2014, No. 1 (54), pp. 34–45.
- Sizykh V.N. Iteratsionno-relaksatsionnyi metod nelineinogo sinteza regulyatorov [The iterative-relaxation method of nonlinear synthesis of controllers]. Avtomatika i telemekhanika [Automation and Telemechanics], 2005, No. 6, pp. 47–58.
- Mukhopad Yu.F., Pashkov NN, Sizykh V.N. Adaptivnyi podkhod k neironnomu upravleniyu odnim klassom absolyutno ustoichivykh sistem [An adaptive approach to neural control of one class of absolutely stable systems]. Fundamental'nye issledovaniya [Fundamental Research], 2011, No. 8-1, pp. 139–147.
- Daneev A.V., Rusanov V.A., Rusanov M.V., Sizykh V.N. K aposteriornomu modelirovaniyu nestatsionarnykh giperbolicheskikh sistem [On a posteriori modeling of non-stationary hyperbolic systems]. Izvestiya Samarskogo nauchnogo tsentra RAN [Bulletin of the Samara Scientific Center of the Russian Academy of Sciences], 2018, Vol. 20, No. 1 (81), pp. 106–113.
- Sizykh V.N. Iteratsionno-relaksatsionnyi metod priblizhenno-optimal'nogo sinteza regulyatorov [The iterative-relaxation method of approximate optimal synthesis of regulators]. Doklady Akademii Nauk [Papers of the Academy of Sciences], 2000, Vol. 371, No. 5, pp. 574–576.
- Ageev A.M., Sizykh V.N. Sintez optimal'nykh regulyatorov sistemy upravleniya samoletom cherez reshenie obratnoi zadachi AKOR [Synthesis of optimal controllers for an airplane control system by solving the inverse problem of analytical design of optimal controllers]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Scientific Herald of Novosibirsk State Technical University], 2014, No. 3 (56), pp. 7–22.