MODELLING OF ICE MELTING MODES IN TRACTION NETWORKS

Receipt date: 
21.02.2017
Section: 
Year: 
2017
Journal number: 
УДК: 
621.311: 621.321
Article File: 
Pages: 
167
174
Abstract: 

Ice, hoarfrost and sleet on wires of a tractive network can lead to the following negative consequences: to whipping and approach of wires; to intensive dancing of wires leading to short circuits, damages of the linear accessories and fixings result; to a mechanical overload and wire breakage, breakage traverse and brackets; to corrupting of support in case of the strong wind and existence of ice cover. Thermal, mechanical and chemical methods are applied to fight against ice. Preventive heating of wires and melting of ice belong to thermal methods.

Efficiency of thermal methods of fight against ice can be increased by methods of planning of heating and melting modes based on computer simulation. Such simulation can be realized with use of methods of determination of tractive electrical power supply system’s modes in phase coordinates developed at the Irkutsk state transport university.

Results of the researches aiming to create computer simulation technologies of fight against ice cover by wires heating by currents arising in case of contact network supply from different phases of tractive substation are given in the article.

On the basis of received results the following outputs are formulated: in case of contact network supply from different phases of tractive substation wires currents increase significantly; these currents cause the essential wires heating sufficient for effective ice melting; in a contact network supply from different phases of tractive substations electric locomotives current collectors voltages were in tolerable limits; asymmetry coefficients on the reverse sequence on primary buses of tractive substations didn't quit from normally tolerance ranges; growth of the currents proceeding on wires led to increase in magnetic field strength.

The offered technique of modelling contact network supply from different phases of tractive substations can be applied to planning of modes of fight against ice.

List of references: 
  1. Методические указания по борьбе с гололедом и автоколебаниями на контактной сети, линиях ДПР, автоблокировки и продольного электроснабжения. Кн. 1. М., 2004. 105 с.
  2. Григорьев В.Л., Игнатьев В.В. Тепловые процессы в устройствах тягового электроснабжения. М.: УМЦ по образованию на ж.-д. трансп, 2007. 182 с.
  3. Никитина И.Э., Абдархманова Н.Х., Никитина С.А. Способы удаления льда с проводов линий электропередачи // Нефтегазовое дело. 2015. № 3. С. 794–823.
  4. Закарюкин В.П., Крюков А.В. Сложнонесимметричные режимы электрических систем. Иркутск : Изд-во Иркут. ун-та, 2005. 273 с.
  5. Закарюкин В.П., Крюков А.В. Методы совместного моделирования систем тягового и внешнего электроснабжения железных дорог переменного тока. Иркутск : изд-во Иркут. гос. ун-та путей сообщения. 2011. 160 с.
  6. Крюков А.В., Закарюкин В.П., Буякова Н.В. Электромагнитная обстановка на объектах железнодорожного транспорта. Иркутск : Изд-во ИрГУПС, 2011. 130 с.
  7. Крюков А.В., Закарюкин В.П., Буякова Н.В. Управление электромагнитной обстановкой в тяговых сетях железных дорог. Ангарск: Изд-во АГТА, 2014. 158 с.
  8. Zakaryukin V.P., Kryukov A.V. Multifunctional mathematical models of railway electric systems // Innovation and Sustainability of modern railway proceeding of ISMR 2008. China railway publishing house. Beijing, 2008. P. 504–508.
  9. Zakaryukin V.P., Kryukov A.V. Intelligent Traction Power Supply System // The power grid of the future/ Proceeding № 2. Otto-von-Guericke University Magdeburg. Magdeburg. 2013. pp. 44–48.
  10. Zakaryukin V.P., Kryukov A.V. Mathematical Model of Multiphase Power Transmission Line // The power grid of the future. Proceeding № 3. Otto-von-Guericke University Magdeburg. Magdeburg. 2013. pp. 70–74.
  11. Zakaryukin V.P., Kryukov A.V. Multifunzionale modellazione di sistemi di energia elettrica-energia // Italian science Review. 2014. 3(12). pp. 267–272.
  12. Zakaryukin V.P., Kryukov A.V., Abramov N.A. Electro energetic technological control in Eastern Siberia Railway // JEPE Journal of energy and power engineering. v.6. # 2. 2012. pp. 293–299. (USA).
  13. Zakaryukin V.P., Kryukov A.V., Buiakova N.V. Management of electromagnetic environment in railway electro traction systems. // Smart grid for efficient energy power system for the future. Proceeding. Vol. 1. Otto-von-Guericke University Magdeburg. Magdeburg. 2012. pp. 31–35.
  14. Zakaryukin V.P., Kryukov A.V., Buyakova N.V. Improvement of Electromagnetic Environment in Traction Power Supply Systems // The power grid of the future. Proceeding № 2. Otto-von-Guericke University Magdeburg. Magdeburg. 2013. pp. 39–44.
  15. Свидетельство №2007612771 Рос. Федерация. «Fazonord-Качество – Расчеты показателей качества электроэнергии в системах электроснабжения в фазных координатах с учетом движения поездов» / В.П. Закарюкин, А.В. Крюков. Федер. служба по интеллектуальной собственности, патентам и товарным знакам. Зарегистр. 28.06.2007.