Receipt date: 
Bibliographic description of the article: 

Daneev A. V. Postroyeniye opornykh pryamykh k dvum neperesekayushchimsya ogra-nichennym mnozhestvam tochek na ploskosti v zadache formiro-vaniya trayektorii dvizheniya transportnykh sredstv [Construction of supporting lines to two non-intersecting limited sets of  points on a plane in the problem of formation of a vehicle trajectory]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2019. Vol. 64, No. 4. Pp. 108–112. DOI: 10.26731/1813-9108.2019.4(64). 108-112

Journal number: 


Article File: 

This article proposes a method for finding supporting lines to two non-intersecting, limited sets of points on the plane. For cases where the sets are convex polygons, known algorithms are based on the classification of the vertices of the polygons and the angles between the supporting lines and the sides of the polygons. A new criterion and an algorithm for finding supporting lines of two strictly convex polygons are proposed. Such problems may arise in the study of the tasks of the formation of the trajectory of movement of vehicles, including taking into account the bypass of hazardous areas along the route. Well-known mathematical statements and methodologies for solving problems whose internal content is close to the problem of forming a route either do not consider the possibility of physical implementation of the solutions obtained with their help, or use the dynamics factor in the form of equations of motion. This significantly complicates the algorithmic side of solving the problem. The geometrical approach, taking into account the dynamics factor, makes it possible, on the one hand, not to rely on the dynamics equation when synthesizing control, and on the other hand, it allows a priori asserting the feasibility property of the resulting vehicle route in terms of their allowable maneuver capabilities. The material of the article can make up a mathematical component of software and mathematical support for solving the navigation problem to determine the optimal (based on the minimum length) trajectory of vehicles and meets the requirements for RAM and speed during its software implementation on the on-board processor.

List of references: 
  1. Daneev A.V., Kumenko A.E., Rusanov V.A. Geometricheskii podkhod k zadache formirovaniya traektorii poleta ekranoplana s uchetom obkhoda opasnykh oblastei po trasse marshruta [A geometrical approach to the task of forming an ekranoplan flight path taking into account the bypass of hazardous areas along the route route]. Izvestiya vuzov. Aviatsionnaya tekhnika [University proceedings. Aeronautical engineering], No. 4, 1995.
  2. Preparata F. P. and Hong S.J. University of Illinois at Urbana-Champaign. Convex hulls of finite sets of points in two and three dimensions, Comm. ACM 2(20), 87-93, Feb 1977.
  3. Shamos M. I. Computational geometry. Ph. D. Thesis, Dept. of Comput. Sci., Yale Univ., 1978.
  4. Overmars M. H. and van Leeuwen J. Maintenance of configurations in the plane, J. Comput. And Sust. Sci. 4. 166-204 (1981)
  5. Preparata F., Sheimos M. Vychislitel'naya geometriya: Vvedenie [Computational Geometry: Introduction]. Moscow: Mir Publ., 1988. 478 p.
  6. James R. W., Application of wave forecast to marine navigation. Washington, D.C.: US Navy Hydrographic Office, 1957. 78 p.
  7. Hagiwara H., Weather routing of (sail-assisted) motor vessels. Ph. D. thesis. Delft: Technical University of Delft, 1989. 337 p.
  8. Bijlsma S. J. A Computational Method for the Solution of Optimal Control Problems in Ship Routing. Navigation. Journal of The Institute of Navigation, vol. 48, pp. 145-154, 2001.
  9. Chen H. A dynamic program for minimum cost ship routing under uncertainty. Ph. D. thesis. Massachusetts: Massachusetts Institute of Technology, 1978, 163 p.
  10. Veremei E.I., Korchanov V.M., Korovkin M.V., Pogozhev S. V. Komp'yuternoe modelirovanie sistem upravleniya dvizheniem morskikh podvizhnykh ob"ektov [Computer simulation of motion control systems for marine moving objects]. St. Peterbsurg: The RDC of Chemistry of SPbGU Publ., 2002. 370 p.
  11. Alekhin D.V., Yakimenko O.A. Sintez algoritma optimizatsii traektorii poleta po marshrutu pryamym variatsionnym metodom [Synthesis of an algorithm for optimizing a flight path along a route by a direct variational method]. Izvestiya Akademii nauk. Teoriya i sistemy upravleniya [News of the Academy of Sciences. Theory and control systems], 1999. No. 4, pp. 150-167.
  12. Daneev A.V., Kumenko A.E. Geometricheskii podkhod v zadache tekushchego planirovaniya trassy poleta ekranoplana [A geometric approach to the problem of the current planning of the flight path of a ground-effect vehicle]. Asimptoticheskie metody v zadachakh aerodinamiki i proektirovaniya letatel'nykh apparatov [Asymptotic methods in problems of aerodynamics and aircraft design], Irkutsk: IGTU Publ., 1996, pp. 35-37.
  13. Daneev A.V., Kumenko A.E., Rusanov V.A. Spektral'naya identifikatsiya matematicheskoi modeli dinamicheskoi sistemy upravlyaemogo uglovogo dvizheniya letatel'nogo apparata [Spectral identification of a mathematical model of a dynamic system of controlled angular motion of an aircraft].  Vostochno-Sibirskii aviatsionnyi sbornik [East Siberian Aviation Collection]. Irkutsk: IrGTU Publ., 2001, pp. 65-71.
  14. Aleksandrov A.A. Modelirovanie termicheskikh ostatochnykh napryazhenii pri proizvodstve malozhestkikh detalei: diss. … kand. tekhn. nauk [Modeling of thermal residual stresses in the production of semi-rigid parts: Ph.D. (Engineering) thesis]. Irkutsk: 2016. 165 p.
  15. Aleksandrov A.A. Prognozirovanie ostatochnykh napryazhenii voznikayushchikh pri termoobrabotke alyuminievykh splavov [Prediction of residual stresses arising during the heat treatment of aluminum alloys]. Inzhenernyi vestnik Dona [The Engineering Bulletin of the Don], 2015. No. 4 (38), pp. 128.
  16. Daneev A.V., Rusanov V.A., Kumenko A.E. Programma chislennogo  modelirovaniya upravlyaemogo poleta letatel'nogo apparata s analogovym rulevym privodom i identifikatorom [Program for the numerical simulation of controlled flight of an aircraft with an analogue steering gear and identifier]. Certificate on the official registration of a computer program of the Russian Agency for Patents and Trademarks No. 2002611030 dated Jun 20, 2002.
  17. Daneev A.V., Rusanov V.A. Geometricheskii podkhod k resheniyu nekotorykh obratnykh zadach sistemnogo analiza [A geometric approach to solving some inverse problems of system analysis]. Izvestiya vuzov. Matematika [News of universities. Mathematics], 2001. No. 10.
  18. Aleksandrov A.A., Livshits A.V. et al. Ustroistvo dlya opredeleniya koeffitsientov teplootdachi [Device for determining heat transfer coefficients]. Pat. 155337 RF. MPK G 01 N 25/18. No.2014154288/28; applied 30.12.14 ; publ. 10.10.2015, Bull. No.28.
  19. Aleksandrov A.A., Livshits A.V. Prognozirovanie temperaturnogo polya dlya opredeleniya ostatochnykh napryazhenii voznikayushchikh pri termicheskoi obrabotke alyuminievykh splavov [Prediction of the temperature field to determine the residual stresses arising during the heat treatment of aluminum alloys]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: the scientific edition of N.E. Bauman MSTU], 2014. No.7, pp. 36-47.