Strategic planning of cargo flows based on the product distribution model

Receipt date: 
Bibliographic description of the article: 

Lebedeva O.A., Gozbenko V.E. Strategicheskoye planirovaniye gruzopotokov na osnove modeli raspredeleniya produktov [Strategic planning of cargo flows based on the product distribution model]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2020, No. 4 (68), pp. 183–189. – DOI: 10.26731/1813-9108.2020.4(68).183-189

Journal number: 


Article File: 

The article identifies the problem of the distribution of cargo flows in a multimodal network, taking into account the aspects of the transport system in the selected network representation. Network models allow predicting flows by modeling a physical network at the level of detail of a country or large region. Demand for transportation services is exogenous and can be obtained by calculation, observation method or other sources. The prospects of integration with econometric models of demand are considered. The emphasis is on network representation, taking into account overload in a static model intended for use in comparative studies or for multi-period analysis with discrete time. The multi-product model is formulated in a general way, allowing you to include both convex and asymmetric cost functions. Nevertheless, some assumptions made regarding the structure of cost functions simplify and allow solving large problems in a reasonable time. The solution algorithm is reduced to the following procedures: a network view is selected to integrate transportation and transshipment options; then a multi-purpose model is formulated and the functions of average and marginal cost are analyzed. Next, the shortest paths with transportation costs in the selected network are calculated; effectiveness is demonstrated and model testing is evaluated. Strategic freight traffic planning model, suitable for international and regional freight transportation systems. New aspects of the model are a way of representing the network, specification of requirements, an algorithm for solving mathematical programming, adaptation of the shortest path algorithm, and the use of numerical analysis.

List of references: 
  1. Lebedeva O.A., Kripak M.N. Modelirovaniye gruzovykh perevozok v transportnoy seti // Vestnik Angarskogo gosudarstvennogo tekhnicheskogo universiteta. 2016. № 10. S. 182-184.
  2. Antonov D.V., Lebedeva O.A. Osnovnyye printsipy razvitiya transportnykh sistem gorodov // Vestnik Angarskoy gosudarstvennoy tekhnicheskoy akademii. 2014. № 8. S. 149-155.
  3. Kuzmin O. V., Tyurneva T. G. Schroeder numbers, their generalizations and applications. In the collection: Asymptotic and enumerative problems of combinatorial analysis. Collection of scientific papers. Published by the decision of the Editorial and Publishing Council of Irkutsk State University. Irkutsk, 1997. p. 117-125.
  4. Lebedeva O.A., Kripak M.N. Razvitiye gorodskikh gruzovykh sistem s uchetom kontseptsii gorodskogo planirovaniya / Sbornik nauchnykh trudov Angarskogo gosudarstvennogo tekhnicheskogo universiteta. 2016. T. 1. № 1. S. 244-247.
  5. Poltavskaya Yu. O. Application of geoinformation systems for ensuring sustainable development of the city's transport system. In the collection: Information technologies in science, management, social sphere and medicine. Collection of scientific papers of the VI International Scientific Conference. Edited by O. G. Berestneva, V. V. Spitsyn, A. I. Trufanov, T. A. Gladkova. 2019. pp. 164-167.
  6. Kuzmin O. V., Leonova O. V. Tushar polynomials and their applications. Discrete mathematics. 2000. Vol. 12. No. 3. pp. 60-71.
  7. Poltavskaya Yu.O. Primeneniye geoinformatsionnykh sistem dlya obespecheniya ustoychivogo razvitiya transportnoy sistemy goroda / V sbornike: Informatsionnyye tekhnologii v nauke, upravlenii, sotsial'noy sfere i meditsine Sbornik nauchnykh trudov VI Mezhdunarodnoy nauchnoy konferentsii. Pod redaktsiyey O.G. Berestnevoy, V.V. Spitsyna, A.I. Trufanov, T.A. Gladkovoy. 2019. S. 164-167.
  8. Poltavskaya Yu.O. Optimizatsiya transportnoy seti na osnove minimuma obshchikh zatrat na dostavku gruzov // Vestnik Angarskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. № 13. S. 178-183.
  9. Sharov M.I., Mikhaylov A.YU., Duchenkova A.V. Primer otsenki transportnoy dostupnosti s ispol'zovaniyem programmnogo produkta PTV «VISUM» // Izv. vuzov. Investitsii. Stroitel'stvo. Nedvizhimost'. 2013. № 1(4). S. 133-138.
  10. Lebedeva O.A. Analiz proyektirovaniya transportnykh zon na osnove modelirovaniya seti // Vestnik Angarskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. № 13. S. 172-177.
  11. Gozbenko V.Ye., Kripak M.N., Ivankov A.N. Sovershenstvovaniye transportno-ekspeditsionnogo obsluzhivaniya gruzovladel'tsev. Irkutsk: Izd-vo IrGUPS, 2011. 176 s.
  12. Lebedeva, O., Kripak, M., Gozbenko, V. Increasing effectiveness of the transportation network through by using the automation of a Voronoi diagram. Transportation Research Procedia. 2018. Vol. 36. 427–433.
  13. T. G. Crainic, M. Florian and J.-E. Leal, «A Model for the Strategic Planning of National Freight Transportation by Rail» Trans. Sci. 24, 1-24 (1990).
  14. M. Florian, «An Introduction to Network Models Used in Transportation Planning» in Transportation Planning Models, pp. 137-152, M. Florian (ed.), NorthHolland, Amsterdam, 1984.
  15. M. Florian, «Nonlinear Cost Network Models in Transportation Analysis» Math. Program. Study 26, 167-196 (1986).
  16. M. Florian and T. G. Crainic (Editors), «Strategic Planning of Freight Transportation in Brazil: Methodology and Applications» Final Report, 5 volumes, Publications #638-642, Centre de recherche sur les transports, Universite de Montreal, 1989.
  17. M. Florian and M. Los, «A New Look at Static Price Equilibrium Models» Region. Sci. Urban Econ. 12, 579 – 597 (1982).
  18. M. Frank and P. Wolfe, «An Algorithm for Quadratic Programming» Naval Res. Logist. Quart. 3, 95-110 (1956).
  19. T. L. Friesz, R. L. Tobin and P. T. Harker, «Predictive Intercity Freight Network Models» Trans. Res. 17 A, 409-417 (1983).
  20. T. L. Friesz, P. A. Viton and R. L. Tobin, «Economic and Computational Aspects of Freight Network Equilibrium Models: A Synthesis» J. Region. Sci. 25(1), (1985).