THREE-PHASE AND SINGLE-PHASE POWER SUPPLY SYSTEMS WITH STEINMETZ CONVERTERS

Receipt date: 
10.10.2018
Bibliographic description of the article: 

Zakaryukin V. P., Kryukov A. V. Three-phase and single-phase power supply systems with Steinmetz converters. Modern technologies. System analysis. Modeling, 2018, Vol. 59, No. 3, pp. 98–107. DOI: 10.26731/1813-9108.2018.3(59).98-107.

Section: 
Year: 
2018
Journal number: 
УДК: 
621.311
DOI: 

10.26731/1813-9108.2018.3(59).98-107

Article File: 
Pages: 
98
107
Abstract: 

In rural electrical networks three-phase and single-phase electriсal power transmission lines are applied, and for electrical power supply of remote customers power lines (PL) "wire – earth" are used. The efficiency of systems constructed with use of single-phase transmissions can be increased by three-phase – single-phase Steinmetz circuit.

The Steinmetz circuit allows us to symmetrize single-phase and two-phase loadings and to implement reactive power compensation. With its help it is possible to provide complete use of three-phase transformer rated power. The carried out calculations showed low sensitivity of this scheme to errors of parameters’ regulation. The Steinmetz circuit can be applied for obtaining the symmetric three-phase voltage system from a single-phase source.

To implement the Steinmetz circuit, it is necessary to create computer simulation of their modes. Such technol-ogies were created on the basis of methods and means of electrical system mode simulation in phase coordinates developed in Irkutsk State Transport University.

Simulation results of electrical power supply system’s modes with the single-phase power lines show that power losses in the “wire – earth” line become less than in the two-wire power line when power line extent exceeds 25 km. If a line length exceeds 30 km, then electric system with power line "wire – earth" becomes more effective by criterion of voltage deviations. The negative sequence asymmetry coefficient on 0,4 kV buses of receiving substation is equal to 0,2 % in both variants, and zero sequence is close to zero.

Article information: 

Закарюкин В. П. Трехфазно-однофазные системы электроснабжения с преобразователями Штейнмеца / В. П. Закарюкин, А. В. Крюков // Современные технологии. Системный анализ. Моделирование. – 2018. – Т. 59, № 3. – С. 98–107. – DOI: 10.26731/1813-9108.2018.3(59).98-107.

List of references: 

1.      Imshenetskii V.N., Rozhavskii S.M. Sel'skie elektricheskie seti [Rural electrical networks]. Moscow: Kolos Publ., 1970, 392 p.

2.      Leshchinskaya T.B., Naumov I.V. Elektrosnabzhenie sel'skogo khozyaistva [Power supply of agriculture]. Moscow: BIBKOM, TRANSLOG Publ., 2015, 656 p.

3.      Pechenkin V.E. Elektrosnabzhenie lesozagotovok po odnoprovodnoi sisteme OPZ [Power supply of logging through a single-wire system “single wire-earth”]. Moscow: Energoatomizdat Publ., 1965, 180 p.

4.      Wolfs P.J. Capacity improvements for rural single wire earth return systems. In Proc. Power Engineering Conference IPEC 2005. 2005, pp. 1–8.

5.      Nasser Hosseinzadeh N., Mastakov S. Load Modelling for Medium Voltage SWER. 2008 Australasian Universities Power En-gineering Conference, AUPEC 2008. Sydney, NSW, Australia.

6.      Distribution Networks. 2008 Austral-asian Universities Power Engineering Conference (AUPEC'08). 2008, pp. 1–6.

7.      Rufato E.J., de Oliveira C.C.B., Omori J.S., Senger E.C. Analysis and field tests of the influence of harmonic components for protection relay currents on single-wire earth return systems. 19th International Conference on Electricity Distribution. Vienna, 2001, pp. 1–4.

8.      Da Silva I.P., Mugisha P., Simonis P., Turyahikayo G. R. The use of single wire earth return (swer) as a potential solution to reduce the cost of rural electrification in Uganda. Domestic Use of Energy Conference, 2001, pp. 77–81.

9.      Shidlovskii A.K., Kuznetsov V.G. Povyshenie kachestva energii v elektricheskikh setyakh [Improving the quality of energy in the electrical networks]. Kiev: Naukova dumka Publ., 1985, 268 p.

10.    Sainz L., Caro E. and Riera S. Characterization of Harmonic Resonances in the Presence of the Steinmetz Circuit in Power Systems, Power Quality Harmonics Analysis and Real Measurements Data, Prof. Gregorio Romero (Ed.), 2011. ISBN: 978-953-307-335-4, InTech. Available from: http: //www.intechopen.com/books/power-quality-harmonics-analysis-and-real-measu... /characterization-of-harmonic-resonances-in-the-presence-of-the-steinmetz-circuit-in-power-systems

11.    Chindris M., Cziker A., Stefanescu A.S. & Sainz L. Fuzzy logic controller for Steinmetz circuitry with variable reactive elements. Proceedings of 8th International Conference OPTIM 2002, Proc. 1G.3, 2002, pp. 233–238.

12.    Jordi O., Sainz L. & Chindris M. Steinmetz system design under unbalanced conditions. European Transactions on Electrical Power, Vol. 12, No. 4, July/August 2002, pp. 283–290.

13.    Qingzhu W., Mingli W., Jianye C. & Guipping Z. (2010). Model for optimal balancing single-phase traction load based on the Steinmetz’s method. Proceedings of the IEEE Energy Conversion Congress an Exposition (ECCE), pp. 1565–1569, 2010.

14.    Zakaryukin V.P., Kryukov A.V. Slozhno-nesimmetrichnye rezhimy elektricheskikh system [Complex asymmetric modes of electrical systems]. Irkutsk: Irkut. un-ty Publ., 2005, 273 p.

15.    Kryukov A.V., Zakaryukin V.P. Metody sovmestnogo modelirovaniya sistem tyagovogo i vneshnego elektrosnabzheniya zheleznykh dorog peremennogo toka [Methods for joint modeling of traction and external power supply systems for AC railways]. Irkutsk: IrGUPS Publ., 2011, 170 p.

16.    Zakaryukin V.P., Kryukov A.V. Determination of the induced voltages when nonparallel power lines are adjacent to one another. Power Technology and Engineering, 2015, Vol. 49, No. 4, pp. 304–309.

17.    Zakaryukin V.P., Kryukov A.V. Multifunctional Mathematical Models of Railway Electric Systems. Innovation & Sustainability of Modern Railway – Proceedings of ISMR’2008. Beijing: China Railway Publishing House, 2008, pp. 504–508.